Fragile X Syndrome and Selective Mutism

R.J. Hagerman,1,2* J. Hills,1 S. Scharfenaker,1 and H. Lewis2

1Child Development Unit, The Children’s Hospital, Denver, Colorado
2JFK Center for Developmental Disabilities, University of Colorado Health Sciences Center, Denver, Colorado

This is the first report that details an association between fragile X syndrome (FXS) and selective mutism (SM). This 12-year-old girl with heterozygous full mutation at \textit{FMR1} has a long history of social anxiety and shyness in addition to SM. Her sister also has the full mutation and a history of SM that resolved in adolescence. A beneficial response to fluoxetine and psychotherapy is described. The \textit{FMR1} mutation appears to be the first gene mutation associated with SM and further studies are recommended to assess what percentage of patients with SM have the \textit{FMR1} mutation. Am. J. Med. Genet. 83:313–317, 1999.

© 1999 Wiley-Liss, Inc.

KEY WORDS: selective mutism; fragile X syndrome; \textit{FMR1} mutation

INTRODUCTION

Previous reports have emphasized the association between selective mutism (SM) and abuse or traumatic events [Hayden, 1980; Kolvin and Fundudis, 1981; MacGregor et al., 1994] and passive aggressive or oppositional behavior [Hayden, 1980; Kolvin and Fundudis, 1981]. Recent studies have found a significant association between selective mutism and anxiety symptoms including shyness, panic episodes, social phobia, avoidant disorder, and most importantly, social anxiety [Black and Uhde, 1992; Black and Uhde, 1995; Black, 1994; Crumley, 1990; Dummit et al., 1997]. In a study of 30 children with SM, 97% met diagnostic criteria for social phobia, avoidant disorder, or both, whereas only 13% reported a history of physical or sexual abuse and only 10% had a diagnosis of oppositional defiant disorder, and the oppositional behaviors were not a primary concern for the families [Black and Uhde, 1995]. Similar results were reported by Dummit et al. [1997] in a study of 50 children with SM where all 50 met criteria for social phobia or avoidant disorder and 48% had additional anxiety disorders. In addition, Black and Uhde [1995] also found a significant family history of anxiety problems, with first-degree relatives demonstrating social phobia in 70% of families and SM in 37% of families. In 22% of the families, the parent was selectively mute. Similar rates of family involvement have also been reported by others [Brown and Lloyd, 1975; Browne et al., 1963]. The disorder is somewhat higher in females than in males [Dummit et al., 1997; Kolvin and Fundudis, 1981].

Klin and Volkmar [1993] reported two cases of SM associated with mental retardation and reviewed three other studies that reported cognitive deficits in association with SM [Kolvin and Fundudis, 1981; Kupietz and Schwartz, 1982; Reed, 1963]. None of these patients were tested for fragile X syndrome (FXS). Several authors report the association of speech and language problems and SM [Gidden et al., 1997; Kolvin and Fundudis, 1981; Wilkens, 1985; Wright et al., 1985].

Dow et al. [1995] describe guidelines for the assessment and treatment of SM and they include detailed cognitive, language, academic, audiological, social, and psychiatric assessments in addition to studies of the family history. However, in this description of the current guidelines for assessment there is no mention of testing for FXS or other laboratory studies. Since we have occasionally seen a female with FXS and SM [Hagerman, 1996a], we are reporting a detailed case study to emphasize the need for further research regarding this association.

FXS is the most common inherited form of mental retardation known; however, it also causes a spectrum of learning and attentional problems without mental retardation [Hagerman, 1996]. Shyness and social anxiety are core manifestations in males and females with FXS [Hagerman, 1996b; Lachiewicz, 1995; Sobesky et al., 1995]. Freund et al. [1993] studied 17 females with FXS and found 65% with avoidant disorder in childhood or avoidant personality disorder and 47% with mood disorder that was significantly different from age- and IQ-matched controls. Approximately 50 to 70% of females with a full mutation (greater than 230 CGG repeats) in the \textit{FMR1} gene have cognitive abilities in the borderline or mentally retarded range.
Her language in school gradually increased after pubertal experiences during middle school, in addition to learning disability support, participated in school choir and played the saxophone in the school band. She has had a history of not talking in school for a period of time, but the details are not well remembered. Mother has the pre-mutation and has a history of not talking in school for a period of time, but the details are not well remembered. Mother has two sisters who have boys with FXS. One male cousin has FXS with mental retardation and ADHD, and another male cousin has a mosaic pattern on DNA testing with severe ADHD and aggression but an IQ of 100.

On examination, Karen's height is at the 35th centile for age, weight at the 50th centile for age, and head circumference at the 80th centile. She was shy and mute on examination and she demonstrated poor eye contact. Blood pressure was 115/70 mmHg and heart rate was 80/min. She had a prominent forehead and a mildly long face. Eyes were normal and her ears were mildly prominent. Her palate was narrow and high arched but her jaw was not prominent. Chest and heart were normal and breast development was Tanner stage 2, genitalia development was Tanner stage 1. Her skin was soft and smooth, her finger joints were mildly hyperextensible with metacarpal phalangeal extension to 80°, thumbs were not double jointed, and palmar creases were normal. Her feet were not completely flat and a hallucal crease was present on the bottom of her foot. Deep tendon reflexes were 2+ and symmetrical, Babinski reflex was absent, and there was no tremor. Mild visual motor coordination problems were seen in her handwriting and in her picture drawing.

Due to the total lack of verbalization with strangers, Karen's assessment of speech and language was completed using a pointing response and the Peabody Picture Vocabulary Test III (PPVT-III), as well as use of head nods and gestures to indicate responses to questions about her speech habits across typical settings. Her receptive vocabulary was within the average range with a standard score of 90 and a percentile rank of 25. A summary grid [Cline and Baldwin, 1994] of speech and language testing had been completed by having Karen utilize gestures and nods to indicate responses. Karen's SM across different settings was assessed. She reported that she feels she speaks normally and with normal loudness at home and with her mother and sister but will not initiate speech with her father. More specific language testing had been completed through her school one year ago in a non-standardized manner by having Karen's best friend administer the tests. The results of the testing showed significant receptive and expressive language delays with almost all scores below the 9th percentile. Results of the semantic relations subtest of Clinical Evaluation of Language Fundamentals Revised (CELF-R) were within the average range and the therapist assisting in administering the test felt that the written words accompanying the verbal text were helpful cues for Karen. Articulation, fluency, as well as volume were assessed as being normal when Karen was observed in conversation with her good friend or mother.

Speech/language therapy in school focused on praise for any attempts at whispering or vocalizing. The school speech/language pathologist felt all attempts at
Karen with emphasis on alternative means of self-expression and expectations for speech reduced or eliminated; (2) clarification and validation of Karen's complex rules regarding where, when, and to whom she can or cannot speak and permission to change those rules gradually if in her best interests; (3) direct, metaphorical, and paradoxical suggestions regarding ways in which Karen can be in control of situations and cope with conflicts; (4) exploration of Karen's inner conflicts, fears, and painful experiences; (5) adjunct family therapy to increase expectations of Karen regarding independent functioning, to promote Karen's understanding of how her family's expectations of her are changing, and to enhance Karen's understanding of the extent to which she is reiterating her sister’s history and her freedom to chart her own course; and (6) consultation with family and school personnel regarding how to reduce attention and other secondary gain provided to Karen for “silent behavior”, this includes reduction of overt reinforcement for speaking because the preceding “silent behavior” is part of a longer chain of behavior being reinforced and because such reinforcement may provide an explanation for speaking (i.e., external justification) and block internal attributions about wanting to speak.

Fluoxetine was initiated to decrease her anxiety and facilitate speech. She tolerated her initial dose of 10 mg per day without any side effects. Within the first 30 days of her treatment program, which included psychotherapy and counseling, she began verbalizing spontaneously with her father and she increased her verbalizations with family friends and relatives. Nonverbal communication improved at school during her first month on treatment and then school let out for the summer. Her fluoxetine dose was increased to 20 mg/day and she and her family continue in weekly therapy. She and her parents are pleased with an improvement in mood and a decrease in anxiety.

DISCUSSION

This case represents the first detailed description of SM in a girl with FXS. She demonstrates classical SM including anxiety, panic episodes, a good response to fluoxetine and psychotherapy, and a family history of SM in the sister who also has a full mutation and possibly in the mother who only has a premutation. Although Karen has learning disabilities and language deficits caused by FXS she is not mentally retarded. It is the anxiety and social phobia of FXS that appears to predispose her to SM. None of the males in this family have SM and we have not seen SM in association with males and FXS. We have seen six females with FXS and SM, including the two well-documented cases in the family reported here. We have not systematically studied our whole population of females with FXS (approximately 100), although such a study is warranted.

Shyness and social anxiety are pervasive problems in FXS and in males, the poor eye contact and tactile defensiveness are usually associated with other autistic-like behaviors such as flapping and hand biting [Cohen et al., 1989; Hagerman, 1996a]. Such stereotypes also occur in approximately 35% of girls with FXS [Freund et al., 1989; Hagerman, 1996a].
et al., 1993]. Autism, which represents the most severe end of the spectrum of social anxiety and social withdrawal, occurs only occasionally in females with FXS [Bolton et al., 1989; Edwards et al., 1988; Gillberg et al., 1988; Hagerman et al., 1986; Le Couter et al., 1988]. Screening studies of autistic females have yielded 12.1% [Cohen et al., 1989] and 5% with FXS [Bailey et al., 1993]. Therefore, it is recommended that all females with autism should be screened for FXS. However, such a recommendation has not yet been made for severe anxiety disorders or avoidant disorders, which are strongly associated with FXS in females.

ADHD is seen in approximately 35% of females with FXS [Freund et al., 1993; Hagerman et al., 1992]. The presence of significant impulsivity and hyperactivity is negatively correlated with the severity of shyness and social anxiety in females with the full mutation [Sobsey et al., 1995; Sobsey et al., 1996]. Therefore, ADHD may be somewhat protective from significant social anxiety particularly from a severe form that could lead to SM. The girl reported here did not have ADHD. Most males with FXS have some degree of ADHD and perhaps this is why we have not seen SM in males with FXS.

Black and Uhde [1994] have reported a double-blind, placebo controlled study of fluoxetine in the treatment of 15 patients with SM. They found significant improvements over placebo in parent ratings of mutism change and global change. Dummit et al. [1996] and others [Wright et al., 1995] have also reported on the benefit of fluoxetine in patients with SM. Fluoxetine has been reported to be beneficial in treatment in FXS, particularly for anxiety, depression, and aggression, although no controlled studies have been carried out [Hagerman, 1996a; Hagerman et al., 1994].

We recommend further studies regarding the association of SM and FXS. These studies should include DNA FMR1 studies in children with SM, particularly if they have language and/or cognitive deficits or a family history of SM, autism, or mental retardation. The diagnosis of FXS is important to make because of the need for genetic counseling in multiple family members since the risk for a carrier to pass on the mutation is 50% [Cronister, 1996]. The diagnosis of FXS can also help to organize treatment and intervention known to be helpful in FXS [Hagerman, 1996a; Scharfenaker et al., 1996; Schopmeyer and Lowe, 1992; Spiridigliozzi et al., 1995]. The FMR1 mutation appears to be the first gene mutation associated with SM, although many more will no doubt be found in the future.

ACKNOWLEDGMENTS
We thank Megan Lampe for her support in preparation of this manuscript. We also thank the Fragile X Treatment & Research Center and the Developmental Psychobiology Research Group of the University of Colorado Health Sciences Center for intellectual support.

REFERENCES

Kolvin I, Fundusis T. 1981. Elective mute children: Psychological, develop-

