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Abstract Fragile X Syndrome (FraX) is the most common

inherited cause of learning disability worldwide. FraX is

an X-linked neuro-developmental disorder involving an

unstable trinucleotide repeat expansion of cytosine guanine

guanine (CGG). Individuals with the full mutation of FraX

have [200 CGG repeats with premutation carriers having

55–200 CGG repeats. A wide spectrum of physical, behav-

ioural, cognitive, psychiatric and medical problems have

been associated with both full mutation and premutation

carriers of FraX. In this review, we detail the clinical profile

and examine the aetiology, epidemiology, neuropathology,

neuroimaging findings and possible management strategies

for individuals with both the full mutation and premutation

of FraX.
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Introduction

Fragile X syndrome (FraX) is the most common heritable

form of intellectual disability (learning disability) world-

wide. It is an X-linked neurodevelopmental disorder with

recent data suggesting that FraX affects approximately 1 in

2,500 individuals [1, 2] with approximately equal rates in

males and females [3]. The prevalence of the premutation

carrier state is significantly higher with estimates of up to 1

in 251 males [1] and 1 in 100 females noted [4].

Significant variation exists in relation to prevalence

data, however, with figures from Israel finding the fre-

quency of the premutation carrier state in females to be

present in approximately 1 in 130, with the full mutation

present in 1 in 2,500 females [3–5]; data from Canada,

noting the prevalence of premutation carriers to be 1 in 800

males and 1 in 260 females [6, 7] and data from Taiwan

finding that the frequency of premutation male carriers was

much lower, at approximately 1 in 1,670 [8].

As FraX is an X-linked neurodevelopmental disorder,

females, due to the presence of one normal allele, have a

reduction, but not a complete absence of FMRP, resulting

in a less severe physical, cognitive and behavioural phe-

notype. The levels of FMRP in females with FraX are

related to lyonisation, or the X activation ratio (one of two

X chromosomes is randomly inactivated with a consequent

variation in the proportion of active X chromosomes that

have an affected allele) [9–11]. Individuals with the full

mutation of FraX have a characteristic physical, cognitive

and psychological profile, whilst some individuals who are

premutation carriers may exhibit some of these features,

albeit to a lesser degree.

FraX involves an unstable trinucleotide repeat expan-

sion of cytosine guanine guanine (CGG) in the 50 promoter

end (Xq27.3) of the fragile X mental retardation 1 gene

(FMR1) [12]. Individuals with the full mutation of FraX

have [200 CGG repeats with premutation carriers having

55–200 CGG repeats. In the vast majority of cases, the

CGG expansion of the FMR1 gene is accompanied by

methylation of the FMR1 gene and loss of FMR1 protein

(FMRP) production [12, 13]. Absence of FMRP has pri-

marily been associated with abnormal maturation of syn-

aptic connectivity, which is argued to be the primary cause
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of the cognitive deficits frequently observed in FraX [14].

Approximately 15% of individuals with FraX display a

mosaic pattern consisting of both premutation and full

mutation alleles [15].

Clinical presentation

Full mutation FraX males (Table 1)

Individuals with FraX are classically characterized by

cognitive and behavioural difficulties, facial dysmorphism,

connective tissue anomalies and macro-orchidism. Macro-

orchidism, although not specific for FraX, is the most

consistent finding, present in 90% of boys by age 14 [16].

The physical phenotype of FraX males comprises a

broad forehead, a long narrow face, large prominent ears, a

high-arched palate, mitral valve prolapse, dermatoglyphic

abnormalities including hyper-extendible finger joints,

double-jointed thumbs, a single palmer crease and hand

calluses and, as mentioned above, macro-orchidism [15–

19]. The most common medical condition is epilepsy,

which occurs in approximately 20% of individuals with

FraX [20]; however several other medical conditions can

Table 1 Individuals with FraX—physical and psychological profile

Full mutation FraX

males

Full mutation FraX females Premutation FraX males Premutation FraX females

Physical symptoms Broad forehead Usually not evident or very subtle

facial features

Subtle facial features (broad

forehead, large ears)

Usually not evident or very

subtle facial featuresLong narrow face

Large prominent ears

Hyper-extendible

finger joints

Single palmer hand

crease

Macro-orchidism

Cognitive

symptoms

Moderate or severe

intellectual disability

Borderline intellectual disability

(large range of IQ present)

Normal intelligence Normal intelligence

Executive function deficits Subtle executive function

deficitsSeveral executive

function deficits
Executive function deficits Short-term memory deficits

Short-term memory

deficits

Impaired attention

Psychiatric

symptoms or

disorders

Obsessionality Anxiety disorders Obsessionality Increased emotionality

ASD Increased obsessionality Cognitive decline Anxiety

ADHD Mood disorders (principally

depression)

Depression

Anxiety disorders ADHD

Depression ASD

ADHD

Behavioural

symptoms

Social avoidance Social anxiety Alcohol and substance

misuse

Alcohol misuse

Aggression Shyness

Alcohol misuse

Medical conditions Seizures Seizures FXTAS FXTAS

Strabismus POI

Otitis media Thyroid disorders

Gastrointestinal Chronic muscle pain

Problems Hypertension

Obesity Fibromyalgia

Hypertension Muscle pain

Mitral valve prolapse

ASD autism spectrum disorder, ADHD attention deficit hyperactivity disorder; FXTAS fragile X-associated tremor ataxia syndrome, POI primary

ovarian insufficiency
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also occur including recurrent otitis media and strabismus,

which require treatment to prevent hearing impairments

and amblyopia [21].

Frequent behavioural characteristics in FraX males

include poor eye contact, hand flapping, tactile defen-

siveness, impulsivity and a resistance to environmental

change [22]. Indeed, individuals with FraX frequently

demonstrate a need for sameness and often over-react

(including aggressively) to novelty [23]. Gaze aversion,

anxiety, hyperactivity, and social-interaction deficits are

other common behavioural characteristics found in indi-

viduals with FraX [24]. Autism spectrum disorders (ASD)

are significantly over-represented in individuals with FraX

with 25–47% of individuals fulfilling diagnostic criteria

[25–28], with this rate further increased when a diagnosis

of pervasive developmental disorder not otherwise speci-

fied (PDDNOS) is included [29]. In many cases individ-

uals with FraX display qualitative differences in autistic

symptoms and behaviour compared to people with ASD

alone [30]. For example, individuals with both FraX and

co-morbid ASD demonstrate social interaction patterns

suggestive of social aversion rather than a lack of interest

in the social environment more typical of ASD [31],

however individuals with FraX and co-morbid ASD may

be indistinguishable from idiopathic ASD and may show

a similar social disinterest.

Other psychological difficulties noted in FraX males

include mood instability and aggression [32, 33]. Fur-

thermore, anxiety, shyness and even mutism have been

described in children with FraX [34] with 86% fulfilling

diagnostic criteria for an anxiety disorder, social phobia

and specific phobia being the most commonly diag-

nosed [35]. Attention deficit hyperactivity disorder

(ADHD) is also over-represented in individuals with

FraX [36].

The cognitive phenotype of males with FraX includes a

moderate to severe intellectual disability, although

approximately 11% have an intelligence quotient (IQ) in

the mild intellectual disability range [37]; deficits in

executive function, abstract reasoning and short-term

memory (particularly verbal short-term memory); difficul-

ties with attentional control and arithmetic and poor

visuo-spatial processing [14, 24, 38–40]. Tasks requiring

short-term memory for complex sequential information are

particularly problematic for FraX males [39]. However,

individuals with FraX perform relatively well on measures

of visuo-perceptual recognition, constructional ability and

vocabulary [38, 41], and perform competently at tasks that

require short-term memory for simple, meaningful infor-

mation [42]. Furthermore, the patterns of cognitive deficits

for individuals with FraX are different from those of other

IQ matched intellectually disabled individuals. For exam-

ple, an IQ matched Down Syndrome group of boys

demonstrated greater attentional control during tasks

involving selective attention, divided attention and execu-

tive functioning [43].

In summary, FraX males display a relative strength for

learning simple verbal and non-verbal tasks and can recall

simple meaningful information, but display significant

impairments on tasks which require the manipulation of

internal representations or the retention of abstract non-

sequential information [44, 45].

Full mutation FraX females (Table 1)

In females, as discussed in the introduction, there is a

reduction but not a complete absence of FMRP. These

lower levels of FMRP typically result in a less severe

physical, cognitive and behavioural phenotypes in girls and

women. However, some females have severe impairments

that are equivalent to those seen in males.

The physical phenotype in females is milder than that

in males, however many of the same physical symptoms

have been described, including a high arched palate,

prominent ears, a long narrow face, genu valgum and flat

feet [46]. These findings are more prevalent in those with

an intellectual disability [47]. Several other more rare

findings include hyper-extendible finger joints, double-

jointed thumbs, cleft palate, precocious puberty and

connective tissue dysplasia [15, 47–49]. Some females

present with no physical abnormalities but can have sig-

nificant psychiatric, cognitive and executive function

deficits.

Cognitive deficits, whilst less common in females with

FraX, have been noted, with executive function deficits

most prominent [50]. Approximately 25% of females with

FraX have an intellectual disability (an IQ \ 70); how-

ever, most females have an IQ in the borderline to low-

normal range (IQ 70–90) [48]. IQ and other cognitive

deficits in females with FraX have been shown to corre-

late with levels of FMRP [51–54]. Deficits in attention

and increased rates of ADHD have also been reported

[55].

Females with FraX have several behavioural problems

with depression, the most common of these, with up to

50% of individuals having been shown to suffer either from

depression or dysthymia [56, 57]. Anxiety disorders are

also common and have been reported to occur in up to 77%

of females with FraX [32]. Other difficulties include shy-

ness, social anxiety, specific phobias, impulsivity and

schizotypal features, which present as a pattern of inter-

personal socialization deficits such as excessive social

anxiety, odd behaviour, odd speech and inappropriate

affect [32, 58, 59].

J Neurol (2012) 259:401–413 403

123



Individuals with premutation FraX (males and females)

(Table 1)

Some male premutation carriers of FraX exhibit subtle

facial characteristics similar to individuals with full

mutation FraX [60, 61] and display a wide range of subtle

executive function, memory, and language deficits com-

pared to healthy controls, although there are no significant

differences in IQ compared to the general population [62].

Most premutation carriers however have no physical fea-

tures of FraX and thus appear normal. Other difficulties

noted include increased obsessionality and alcohol and

drug misuse or dependence [63]. Male premutation carriers

have been reported to have an increased prevalence of

intellectual disability, ADHD, and ASD [64–68]. Schizo-

typal personality features and avoidant personality disor-

ders have also been noted [69].

Female premutation carriers of FraX usually have no

facial features of FraX though some demonstrate a mild

form of the physical phenotype of FraX [50, 70]. Increased

emotional problems [71], with high rates of major

depressive disorder [57, 69], and some anxiety disorders, in

particular panic disorder and agoraphobia without panic

disorder are present in FMR1 premutation females [32, 57].

However, some anxiety disorders, including social phobia,

specific phobias and post-traumatic disorders actually have

been reported to not be increased in premutation female

carriers of FraX in some but not all studies [57, 72]. Pre-

mutation carrier females of FraX have an increased risk of

chronic muscle pain and thyroid disease—particularly

hypothyroidism, which is associated with increased

symptoms of depression and anxiety [73–75]. Elevated

levels of follicle stimulating hormone are common [76],

and ovarian insufficiency occurs in approximately 20% of

individuals [77].

Two distinct adult onset medical disorders have been

noted in premutation carriers of FraX: fragile X-associated

tremor ataxia syndrome (FXTAS) and primary ovarian

insufficiency (POI).

FXTAS is a progressive neurodegenerative disorder

characterized by late-onset progressive cerebellar ataxia,

intention tremor and cognitive decline in elderly male and

female premutation carriers of FraX [78–80]. Other neu-

rological findings that may occur with FXTAS include

short-term memory loss, dementia, peripheral neuropathy,

lower limb proximal muscle weakness, and autonomic

dysfunction. FXTAS occurs in a subgroup of patients, with

the prevalence of FXTAS estimated at 40–45% of males

and 8–16% of females over 50 years of age with pene-

trance age-related [73, 78, 79, 81]. Whilst an increase in

impulsivity and executive function deficits has been

reported in male premutation carriers without FXTAS [82],

no cognitive deficits have been observed in premutation

carriers under 50 years of age [83].

Primary ovarian insufficiency (POI) is defined as the

cessation of menses before the age of 40 and occurs in

approximately 20% of premutation females with FraX [77,

84] compared to 1% of the general population [85]. POI is

characterized by loss of oocytes, lack of folliculogenesis,

reduced ovarian oestrogen production, elevated serum

gonadotropin levels, amenorrhoea, and infertility in women

before the age of 40.

In contrast to premutation carriers, women who carry

full mutations do not have POI. The absence of ovarian

dysfunction in full mutation females suggests that the lack

of FMRP is not the cause of POI. Rather, it has been

demonstrated that premutation carriers have an increased

amount of mRNA in lymphocytes and neurons, but a

normal quantity of FMRP. This combination of relatively

high levels of an abnormal mRNA (which could trap some

CGG binding proteins) and decreased levels of FMRP [4],

may cause toxicity at blood lymphocytes, granulosa cells

and the ovum [86], and consequently result in POI. Co-

segregation of the premutation carriers of FraX and POI

was first described in 1991.

Aetiology

Genetics

Several studies conducted since 1890 noted a 20–30%

increased prevalence of males compared to females in

institutions or schools for individuals with mental retar-

dation (intellectual disability) [87]. This observation, and

descriptions of families with an apparent X-linked inheri-

tance of mental retardation, led to the suggestion in the late

1960s that mutations in genes on the X chromosome may

be a significant factor accounting for this male predomi-

nance in intellectual disability. In 1969, Lubs [88] descri-

bed a family with four ‘‘mentally retarded’’ males over

three generations, all of whom showed a curious anomaly

of the X chromosome upon cytogenetic examination, then

termed marker X. After 1977, when the ‘‘fragile site’’

became more efficiently detectable under special condi-

tions of karyotyping (culture of lymphocytes in low folate

medium or in the presence of antifolates), FraX became

increasingly recognized [89].

Fragile X mutations are unstable expansions of a CGG

trinucleotide repeat, located in the first exon (non protein-

coding) of the FMR1 gene. Several disabling neuro-psy-

chiatric and neurological conditions result from similar

expanded trinucleotide repeats including Huntington’s

disease, myotonic dystrophy, Freidreich ataxia, spinal
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palsy and bulbar palsy. The full mutation inactivates the

expression of the FMR1 gene, leading to the absence of

FMRP [12, 13, 90]. Premutation carriers of FraX (expan-

sions of 55–200 CGG repeats) have either normal levels or

mild deficits in FMRP. Individuals with FraX may show a

mosaic pattern: a mixture of premutation and full mutation

alleles, most commonly caused by somatic instability of

the full mutation in early embryogenesis leading to a

retraction of the expanded CGG repeat [90]. This mosaic

pattern occurs because the CGG repeat number expands to

greater than 200 repeats in some cells (full mutation),

whereas in other cells the repeat number fails to increase in

size to 200 CGG repeats (premutation alleles). This mosaic

pattern of FraX occurs in approximately 15% of cases [90],

although figures as high as 40% have been noted [91]. A

more rare type of mosaicism is ‘‘methylation mosaicism’’

and is associated with individuals having [200 CGG

repeats (full mutation), but with incomplete methylation of

the FMR1 gene and thus a reduced amount of FMRP.

Therefore, mosaic mutations allow the expression of some

FMRP (usually at low levels), and in some cases have been

associated with lesser degrees of intellectual disability [90].

The transition from premutation carrier status of FraX to

the full mutation occurs through maternal transmission of

the abnormal allele, with a probability (up to 100%)

depending on the size of the premutation, with the smallest

premutation alleles observed to undergo transition to the

full mutation in the next generation recorded at 56 CGGs

repeats [92]. It has been shown that an adenosine guanine

guanine (AGG) interspersion stabilizes the repeats as

instability of the FMR1 gene is due to the length of unin-

terrupted CGGs. However, to our knowledge, technical

difficulties have precluded the determination of this pattern

of AGG interspersion in a diagnostic setting.

The FMR1 gene codes for the cytoplasmic protein

FMRP, which has RNA-binding properties. The FMR1

gene spans approximately 40 kilobases (kb) of DNA and

the protein encompasses 632 amino-acids, although several

shorter forms have been observed in vivo as a result of

alternative splicing of the 17 exons present [93, 94]. FMRP

is abundant in neurons, particularly those in the cerebral

cortex, cerebellum and hippocampus [94, 95], and is also

present in other tissues, including spermatogonia and var-

ious epithelial tissues. FMRP has been detected in polyri-

bosomes, particularly in the dendrites and contains

functional domains allowing its transfer between the

nucleus and the cytoplasm [96], and has been demonstrated

to be involved in the shuttling of RNAs from the nucleus to

the cytoplasm [97]. FMRP contains four RNA binding

domains and binds to several mRNAs including its own

mRNA [98]. FMRP associates with mRNAs and other

proteins to form large messenger ribonucleoprotein

(mRNP) complexes. These complexes are believed to

participate in the transport, localization and translation of

target mRNAs [99, 100]. The proteins comprising these

mRNP complexes are largely unknown. However, certain

candidate proteins exist, such as the autosomal homologs

of FMRP, namely, the fragile X related proteins; fragile X

mental retardation syndrome-related protein 1 (FXR1) and

fragile X mental retardation syndrome-related protein 2

encoded by the FXR1 and FXR2 genes, respectively, and

nucleolin, a protein very abundant in the nucleolus but also

present in the cytoplasm [100]. All three proteins can

shuttle RNAs between the nucleolus and cytoplasm. The

FXR1 and FXR2 proteins have a high sequence similarity

to FMRP, include similar functional domains identified in

FMRP, such as RNA binding domains, and show a similar

tissue distribution to that of FMRP [101]. Studies on FXR2

knockout mice demonstrate similar behavioural phenotypes

to those in FMR1 knockout mice, implicating a similar role

for FXR2 in central nervous system function [101].

FMRP has also been suggested to be involved in syn-

aptic plasticity. Synaptic plasticity adjusts the strength of

synapses during global changes in neural activity, thereby

stabilizing the overall activity of neural networks. The

mechanisms for FMRP’s putative involvement in synaptic

plasticity include its regulation of mRNA translation and

its effect on matrix metallo-proteinase-9 activity (MMP-9).

The absence of FMRP in FraX is associated with a

reduction in translation of mRNAs related to synaptic

plasticity, in particular those specific dendritic mRNAs

which encode cytoskeletal proteins and signal transduction

molecules [102], and an increase in MMP-9 in the synapse

[103]. MMP-9 is important for synaptic structure and

plasticity. As will be described below, minocycline inhibits

MMP-9 activity, and thus may potentially be a treatment

for FraX.

Recent studies in Drosophila suggest that mRNA

transport and translation are not only limited to dendrites

but are also associated with axonal growth [93]. Alterations

in the regulation of axonal growth and innervation in

FMR1 neurons may contribute to the dendritic and spine

pathology characteristic of FraX [104].

Neurotransmitters/neuropeptides

In a genome-wide expression profiling study in fragile X

knockout mice, 3 complementary DNAs (cDNAs) were

found to be differentially expressed: GABA-A receptor

subunit d, Rho guanine exchange factor 12 and expressed

sequence tag BU563433. Of these, the d subunit of the

GABA-A receptor has been postulated to have a putative

role in the cognitive and behavioural phenotype of FraX

[105]. GABA-A receptors are the predominant inhibitory

receptors in the brain and have been implicated in anxiety,

depression, epilepsy, sleep patterns, learning and memory,
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all of which are affected to varying degrees in FraX [106].

Mouse and fly models of FraX have demonstrated a

reduced expression of GABA-A receptors [107, 108],

however no human studies (including neuropathology or

PET imaging studies) have corroborated these findings to

our knowledge to date.

Other amino acids, including glutamate (Glu) and N-

acetyl aspartate (NAA) have also been implicated in the

aetiology of FraX [109–112], with recent animal research

particularly focusing on metabotrophic glutamate receptors

(mGluR). We also look at evidence implicating matrix

metallopeptidase 9 (MMP-9) with FraX.

FMRP is an RNA binding protein which modulates

dendritic maturation and synaptic plasticity. One of the

mechanisms postulated for this effect is its inhibition of

mGluR1 and mGluR5 mediated mRNA translation in

dendrites [113, 114]. Loss of FMRP may have several

effects including long-term depression (LTD) of trans-

mission at hippocampal synapses [115], which is associ-

ated with activity-guided synaptic elimination [116]. It has

been suggested that neurological and psychiatric symptoms

associated with FraX may be a consequence of an exag-

gerated responses to mGluR activation due to an absence of

FMRP [115].

Mouse models have examined the mGluR5 antagonist

2-methyl-6-phenylethynyl-pyridine (MPEP). MPEP has

been shown to block aberrant phenotypes in the FMR1

mouse model of fragile X and has effectively reversed

several phenotypes, including hyperactivity, seizures and

pre-pulse inhibition deficits, and have shown remarkable

improvements in synaptic plasticity and spine morphology

[117]. Repetitive behaviours common in ASD, but also

present in FraX, may also be ameliorated with MPEP

[117]. A recent human study investigated AFQ056, a

receptor subtype-selective inhibitor of mGluR5, in 30 male

individuals with FraX and noted an improvement in

behavioural symptoms of FraX as measured by the Aber-

rant Behaviour Checklist-Community Edition (ABC-C)

[118]. Another putative treatment for FraX via this mech-

anism is Fenobam, a high potency selective mGluR5

antagonist. Fenobam was previously investigated as an

anxiolytic in a number of phase II studies in the early

1980s. However, a number of subjects suffered neurolog-

ical and psychiatric symptoms including vertigo, parae-

thesias, hallucinations and insomnia [119, 120]. A more

recent open label, single dose study demonstrated no such

adverse effects [121].

As described above, the absence of FMRP has been

associated with higher levels of matrix MMP-9 in the brain

[122]. Minocycline, a broad spectrum tetracycline antibi-

otic, inhibits MMP-9 activity, and in FMR1 knockout mice

has been shown to alleviate both synaptic and behavioural

abnormalities [122]. An open-label add-on pilot trial

evaluating the safety and efficacy of minocycline in treat-

ing behavioural abnormalities in humans with FraX dem-

onstrated functional benefits to individuals with FraX,

including an improvement in language and behaviours, and

was also well-tolerated, with loss of appetite the only

significant adverse effect noted [123]. These initial findings

are consistent with the FMR1 knockout mouse model

findings, suggesting that minocycline may modify under-

lying neural defects, which could account for some of the

behavioural abnormalities found in individuals with FraX

[122].

Neuropathology findings

Post-mortem studies in people with FraX have reported

dendritic spines abnormalities; characterized by spines that

are longer, thinner and more tortuous in shape and lacking

the typical ‘‘mushroom shape’’ associated with mature

dendritic spines [124–127]. While dendritic spine anoma-

lies are present in several neuropsychiatric conditions

associated with intellectual disability, they are increased in

density in FraX, which appears to be unique to this con-

dition [128]. FMRP has been suggested to be involved in

dendritic maturation and this is supported by reports that

FMR1 knockout mice have a significant decrease in the

number and function of hippocampal neuronal synapses

[127, 129, 130]. As described above, the dendritic spine

dysgenesis found in FraX is typical of the morphology of

the ‘‘immature brain’’ prior to synaptic elimination.

Eosinophilic, ubiquitin-positive inclusion bodies are the

principal neuropathological finding in FXTAS and are

located in the nuclei of neurons and astrocytes throughout

the brain and the spinal column [131]. These inclusions are

tau-negative and alpha-synuclein negative and contain

FMR1 mRNA [132].

Further neuropathology findings in individuals with

FXTAS include a patchy loss of axons throughout the

brain, spongiosis of the middle cerebellar peduncles and

loss of purkinje cells [131, 133].

Neuroimaging findings

Full mutation FraX

Structural magnetic resonance imaging (MRI) studies have

noted several morphological differences in brain structure

in individuals with FraX compared to healthy controls. The

most replicated findings to date include increased volume

of the caudate nucleus [134–140] and reduced volume of

the cerebellum [136, 141, 142] compared to both healthy

comparison groups and those with ASD. Other findings
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noted in some studies include increased volume of the

lateral ventricles [135, 143, 144]; hippocampus [145–147];

parietal lobes [136, 139], and brainstem [139] and reduced

volume of the cerebellar vermis [141].

The caudate nuclei are involved with regulation of

impulse control and attention, and these neuroimaging

findings may help explain the impulse control and atten-

tional deficits frequently reported in individuals with FraX

[33, 148]. This proposal has been supported by a recent

report of altered fMRI activation in the right caudate of

individuals with FraX engaging in an attention (go–no go)

task [149]. The findings of cerebellar abnormalities may

also explain some of the cognitive phenotype found in

individuals with FraX.

The cerebellum is important in many higher order

functions commonly impaired in individuals with FraX—

e.g. attention [150], social interaction [151] and executive

functioning [152] and has been found to be reduced in

volume in ASD [153], which as mentioned above is

increased in prevalence in individuals with FraX [24].

Premutations carriers of FraX

Most neuroimaging studies in premutation carriers of FraX

are in individuals who have also been diagnosed with

FXTAS. Studies in FXTAS have demonstrated reduced

cerebral and cerebellar volume (males [ females) com-

pared to controls, with particular volume reductions in the

middle cerebellar peduncles, the caudate nucleus and the

parietal lobes [62, 153–156]. These regions have been

implicated in motor and cognitive functions including co-

ordination and attention [78], frequent difficulties in indi-

viduals with FXTAS. In premutation carriers of FraX

without FXTAS, reduced volume in a number of regions

including the amygdala–hippocampal complex bilaterally

[62], the left hippocampus [156] and the left thalamus has

been documented [62, 157], with a negative correlation

between total hippocampal volume and anxiety in female

carriers also reported [158, 159]. No difference in hippo-

campal or amygdala volumes between premutation carriers

and normal controls has however also been observed [157,

158]. Although some studies have noted increased volume

of the hippocampus in FraX individuals [145–147] and

reduced hippocampal volume in premutation carriers of

FraX [62, 157]; one study noted no difference between

premutation and full mutation FraX individuals in relation

to hippocampal volume [147].

Abnormalities in the hippocampus and amygdala have

been suggested by findings in a number of fMRI studies in

premutation carriers of FraX without FXTAS. Reduced

hippocampal activation during a memory recall task [157]

and reduced amygdala activation during a perceptual task

when viewing fearful faces [158] have been observed.

Management

Screening

Screening individuals for any neuro-psychiatric disorder is

a sensitive issue; however, given the recent evidence of the

high frequency of FraX (both full mutation and pre-muta-

tion carriers) in the population, it perhaps should be con-

sidered [14]. For example, an anonymous population

screening, performed in Canada in 1995 on 10,624 females

led to the detection of 41 previously undiagnosed premu-

tation carriers of FraX (an incidence of 1 in 250) [6]. FraX

is detected using DNA analysis: standardized Southern blot

and polymerase chain reaction (PCR) analyses are per-

formed followed by FMR1 specific probe hybridization

[160]. The CGG repeat number is calculated from the

Southern blot autoradiogram images. FMRP levels can be

ascertained by calculating the percentage of peripheral

lymphocytes containing FMRP using immuno-staining

techniques [161]. More recently, a highly sensitive and

specific enzyme-linked immunosorbent assay (ELISA) has

also been developed to measuring FMRP levels in

peripheral blood lymphocytes [162].

Prenatal diagnosis can be performed to determine if a

foetus has inherited the full mutation; once a premutation

or full mutation carrier of FraX has been identified in the

mother, although such testing should only be performed in

conjunction with appropriate counselling for the family

concerned. The sensitivity of prenatal testing is approxi-

mately 99%, although in very rare cases, FraX may result

from point mutations, deletions in the FMR1 FRAX-A

gene or go undetected due to mosaicism.

Screening for FMR1 mutations has been a topic of

consideration since the FMR1 gene was first identified.

Advances in our understanding of the molecular basis of

FraX and advances in genetic testing methods have elicited

new prospects for identifying a greater number of indi-

viduals at risk for the disorder or at risk of transmitting the

disorder [163]. McConkie-Rosell et al. [163] have sug-

gested that individuals suitable for screening include chil-

dren, grandchildren, or siblings with intellectual disability,

autism, and social/behavioral, or learning disorders;

daughters or female relatives with infertility, premature

menopause, or both; and family members with tremor,

ataxia or other neurological (neuropathy, multiple sclero-

sis), and/or psychiatric problems (anxiety disorders,

depression, dementia, cognitive decline). This, however, is

a very wide grouping of individuals, although there does

appear to be merit in screening some of these individuals at

least. We believe that there are two general types of cir-

cumstance in which fragile X testing should be considered:

a clinical presentation suggestive of fragile X syndrome,

including FXTAS or POI, or where there is a risk of
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inheritance of FraX due to a family history of FraX or

intellectual disability of unknown cause.

In relation to clinical presentation; genetic testing for

fragile X should be considered in children with develop-

mental delay including specific speech, language or motor

delay, children with a diagnosis of intellectual disability of

unknown aetiology and ASD. Testing children with bor-

derline cognitive deficits leading to a diagnosis of FraX can

be used to improve educational strategies for the child and

help their families better understand their child’s’ diffi-

culties [15]. Individuals over 50 years old with a recent

onset of tremors, balance disorders, or Parkinsonian-like

findings without a diagnosis would also appear to be a

group that should be tested for FXTAS. Similarly, we

believe that women with unexplained infertility or POI

should also be considered for testing [164].

Screening should also be considered in individuals with

a family history of fragile X to determine if they may be

carriers and at risk of transmitting it to future generations,

and in individuals with a family history of mental retar-

dation or autism of unknown cause.

The recent findings of significant phenotypes in pre-

mutation carriers of FraX have significant consequences for

genetic counselling. Furthermore, in females, unlike males

who are premutation carriers of FraX, the number of CGG

repeats can increase to a full mutation when passed on to

offspring.

Further epidemiological studies are required to better

estimate fragile X allele frequencies for all racial and

ethnic groups, and greater knowledge is needed regarding

the penetrance of FMR1 associated disorders, FXTAS and

fragile X-associated POI, in order to provide anticipatory

guidance and to assist with the development of genetic

counseling protocols [163].

Pharmacotherapy (see Table 2)

There are no pharmacological treatments presently avail-

able that ameliorate the cognitive deficits in FraX. How-

ever, a variety of agents have been utilized for the

behavioural and psychological difficulties, although a

paucity of controlled studies exist that formally measure

their effectiveness [165]. Of those that are present, meth-

ylphenidate, dexamphetamine and L-acetylcarnitine have

demonstrated some benefit for attention and behavioural

difficulties [166, 167]. Anticonvulsants used to treat sei-

zures may also improve autistic features, mood instability

and tantrums [79], whilst antidepressant agents such as

selective serotonin re-uptake inhibitors (SSRIs) may

improve depression and anxiety disorders.

Future pharmaco-therapeutic strategies for FraX may

focus on GABA and Glu, with evidence that the mGluR5

antagonist, 2-methyl-6-phenylethynyl-pyridine (MPEP),

abolishes the audiogenic seizure phenotype in FMR1

knock-out mice [168], and decreases the mushroom body

defects (fused b-lobes) [169]. These findings have been

replicated in multiple animal models and with many phe-

notypes and have led to several human phase II trials that

are on-going. As discussed above, a recent study investi-

gated AFQ056, a receptor subtype-selective inhibitor of

mGluR5, in 30 male individuals with FraX noted an

Table 2 Pharmaco-therapeutic approaches in FraX and areas of potential benefit

Behavioural

difficulties

Attention Repetitive

behaviours

Hyperactivity Cognition Mood instability/

depression

Anxiety

Stimulants ? ? ? ? - - -

Methylphenidate

L-acetylcarnitine

Antidepressants - - ? - - ? ?

SSRIs

TCAs

Anticonvulsants ? - - -/? - ? -

Sodium valproate

Carbamazepine

mGluR5 antagonists ? ? ? ? - - -

MPEP

AFQ056

Fenobam

Minocycline ? - - - ? - -

? potential benefit, - no evidence for benefit, -/? equivocal evidence for benefit, SSRIs selective serotonin reuptake inhibitors, TCAs tricyclic

antidepressants, mGluR metabotrophic glutamate receptors, MPEP 2-methyl-6-phenylethynyl-pyridine
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improvement in behavioural symptoms of FraX [118].

Fenobam, a high potency selective mGluR5 antagonist is a

further putative treatment option given recent evidence of a

good safety profile [121]. Furthermore, minocycline, the

broad spectrum tetracycline antibiotic, has also shown

some promise in an initial open-label study for improving

behavioural difficulties in individuals with FraX [123].

Psychological/environmental approaches

Individuals with FraX have shown benefits from non-

pharmacological interventions such as speech, occupa-

tional and sensory integration therapies. Research in FMR1

knock-out mice has shown that an enriched environment

can rescue many behavioural and neuronal abnormalities

[170]. This suggests that early and intensive psychological

and environmental interventions may substantially benefit

the development of an individual with FraX.

Conclusions

FraX is a common genetic disorder resulting from a single-

gene mutation on the X chromosome and is associated with

a wide spectrum of physical, behavioural, cognitive, psy-

chiatric and medical problems, with males more severely

affected than females. Over the last decade our under-

standing of FraX has considerably increased, with condi-

tions such as FXTAS and POI now known to affect

premutation carriers of the condition. Early diagnosis of

FraX is important to allow the introduction of appropriate

educational and clinical interventions. Whilst there are few

controlled trials to guide management to date, several

medications can ameliorate medical, psychiatric and

behavioural difficulties associated with FraX and can

improve an individual’s quality of life. Future treatments

should possibly be aimed at targeting specific synaptic

mechanisms affected in FraX.
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