
R
o

S
a

b

a

A
R
R
A
A

K
S
S
A
S
S
G

1

T
t
p
s
p
d
I
t
r

a
n
C
J
C
m
e
a

p

0
d

The Journal of Systems and Software 85 (2012) 1269– 1286

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

econciling perspectives: A grounded theory of how people manage the process
f software development

teve Adolpha,∗, Philippe Kruchtena, Wendy Hallb

Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
School of Nursing, University of British Columbia, Vancouver, Canada

 r t i c l e i n f o

rticle history:
eceived 1 September 2011
eceived in revised form 27 January 2012
ccepted 31 January 2012
vailable online 8 February 2012

a b s t r a c t

Social factors are significant cost drivers for the process of software development. In this field study
we generate a grounded theory of how people manage the process of software development. The main
concern of engineers involved in the process of software development is getting the job done. To get
the job done, people engage in a four-stage process of Reconciling Perspectives. Reconciling Perspectives
represents an attempt to converge individuals’ points of view or perspectives about a software project. The
process emphasizes the importance of individuals’ abilities to both reach out and engage in negotiations
eywords:
oftware engineering
oftware team
gile manifesto agile software development
crum
hared mental model

and create shelter from environmental noise to bring a software project to fruition.
© 2012 Elsevier Inc. All rights reserved.
rounded theory

. Introduction

Software development is a risky and expensive proposition.
alking with software developers quickly illustrates the quagmire
hat software development can become. Late delivery, defective
roducts, cost overruns, and frustrated staff and stake holders are
ome of the debris resulting from a failed or less than successful
roject. This is expensive debris considering that global software
evelopment is a 1.6 trillion US dollar industry (Bartels et al., 2006).

mproving the productivity of software development teams and
he quality of delivered software will result in significant economic
eturns.

Numerous studies have demonstrated that individual abilities
nd team social factors are significant cost drivers for software engi-
eering projects, often swamping all other factors (Boehm, 1984;
ockburn, 2002; Cockburn and Highsmith, 2001; Curtis et al., 1987;

ones, 2000; Lister and DeMarco, 1987; Sawyer and Guinan, 1998).
aper Jones (2000) data demonstrate that high levels of manage-
ent and staff experience contribute 120% to productivity while
ffective methods and processes contribute only 35%. Cost drivers
ssociated with personal factors from the COCOMO model “reflect

∗ Corresponding author.
E-mail addresses: stevea@ece.ubc.ca, steve@wsaconsulting.com (S. Adolph),

bk@ece.ubc.ca (P. Kruchten), Wendy.Hall@nursing.ubc.ca (W. Hall).

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2012.01.059
the strong influence of personal capability on software productiv-
ity” (Boehm et al., 1995, p. 86). Earlier, Boehm concluded:

“Personnel attributes and human relations activities provide by
far the largest source of opportunity for improving software
productivity” (Boehm, 1984)

If social factors are the biggest cost drivers, and explain vari-
ance in the productivity of software development teams, research
studies that help us identify and understand social processes in soft-
ware engineering should yield significant benefit to the industry. In
the past, most software engineering research has focused on tools
and production methods, which have limited ability to account
for and manage the variance in software projects (Glass et al.,
2002; Sawyer and Guinan, 1998; Shaw, 2003; Sjoeberg et al., 2005;
Zannier et al., 2006). Shaw’s (2003) analysis of papers accepted by
the International Conference on Software Engineering (ICSE) shows
the majority of accepted papers to be

“. . .reports [of] an improved method or means of developing
software that is, of designing, implementing, evolving, main-
taining, or otherwise operating on the software system itself.
Papers addressing these questions dominate both the submitted
and the accepted papers” (Shaw, 2003, p. 727).
In the past, procedures or techniques and tools and notation
accounted for the majority of the accepted papers (69%), while less
than 10% of the accepted papers described empirical or qualita-
tive models. Another survey of the software engineering research

dx.doi.org/10.1016/j.jss.2012.01.059
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:stevea@ece.ubc.ca
mailto:steve@wsaconsulting.com
mailto:pbk@ece.ubc.ca
mailto:Wendy.Hall@nursing.ubc.ca
dx.doi.org/10.1016/j.jss.2012.01.059

1 ems a

l
m
i
s

m
a
(
d
s
S

r
M
2

c
c
t
T
n
l
D
w
f
p

e
w
d
p
t
t
c
r
p
a
B
o
t
w
t

2

2

p
o
b
t
s
t
H
s
p
F
t
2

m
e

270 S. Adolph et al. / The Journal of Syst

iterature (Glass et al., 2002) reported a very small percentage (in
any cases less than 1%) of research papers explored organizational

ssues or employed research methods useful in understanding
ocial behavior.

The software engineering research agenda is changing, with
ore researchers investigating the influence that personal

ttributes and human relationships have on software projects
Dittrich et al., 2007). The Agile Manifesto and the Agile software
evelopment movement placed a spotlight on the importance of
ocial interactions with the first article of the Manifesto for Agile
oftware Development:

“Individuals and interactions over processes and tools”

The emphasis on individuals and interactions motivated
esearch into social interaction (Chong, 2005; Hoda et al., 2010;
oe et al., 2008; Robinson and Sharp, 2005; Whitworth and Biddle,

007).
However, we believe the state of software engineering research

an still be summed up in Curtis et al.’s (1987) retelling of the 13th
entury story of a man who, after losing his keys, crosses the street
o search under a lamppost because the light is much better there.
his should not come as a surprise to us because we are engi-
eers and not sociologists. Engineers—especially at the research

evel—are engineers because they enjoy solving technical problems.
eveloping tools and methods is what we are educated to do, and
hat we enjoy doing; however, if we are to better understand the

actors that have the greatest influence on software development
erformance, our studies must also examine social processes.

This paper is an extended revision of our Agile 2011 confer-
nce paper (Adolph and Kruchten, 2011). For this research project,
e had the opportunity to study a number of Agile software
evelopment teams in order to understand the variability in the
roductivity of software development by creating a substantive
heory of how people actually do, or “manage” as we have referred
o it, the process of software development. Our study makes two
ontributions: the first is our findings, and the second is our expe-
ience using grounded theory (Glaser and Strauss, 1967). In this
aper, the conceptual elements of the theory are highlighted with
n underlined italicized font; for example, the conceptual element
unkering is highlighted as Bunkering. In Section 2 we present an
utline of our study and a description of our use of the grounded
heory method. In Section 3 we present our theory, and in Section 4
e provide a discussion of our results within the context of existing

heories. Section 5 summarizes our results and recommendations.

. Our study

.1. Motivation

The study we conducted was aimed at understanding the social
rocesses that influence software team performance and the effects
f software methods on those processes. Methodologists argue the
enefits of following a software development methodology, and
here are studies that demonstrate a positive correlation between
oftware development method adoption and team effectiveness in
erms of product quality and productivity (Diaz and Sligo, 1997;
arter et al., 2000). On the other hand, industry data demon-

trate that the effect of software methods on software development
roductivity is limited (Jones, 2000; Sawyer and Guinan, 1998).
urthermore, the contribution of software methods to team effec-
iveness is frequently questioned (Cockburn, 2003; Dyba et al.,

005; Fitzgerald, 1998).

What is going on here? Is it possible that low rates of software
ethods adoption are a strong indicator that software practition-

rs do not believe their needs are being addressed by software
nd Software 85 (2012) 1269– 1286

methods? While there are anecdotes about methodology usage, or
lack thereof, there is a gap in our empirical knowledge about the
interface between software developers and methods. A grounded
theory study, producing a substantive theory that explains how
people manage the software development process, could diminish
that gap. Anecdotes about software development, unlike theory, are
not useful to guide policy. Questions arise, such as: “What are the
needs of those involved in the process of software development?”
We chose a qualitative approach for our research because we were
interested in understanding the issues that are relevant to software
engineers. We chose grounded theory as our method because we
were interested in generating theory that explains how engineers
manage the problem of quality software development.

2.2. Grounded theory

Grounded theory is a qualitative research method wherein
researchers construct theory from data. It is useful for explaining
behavioral patterns that shape social processes as people interact
in groups (Glaser and Strauss, 1967). The goal of a grounded the-
ory study is to understand the action in a substantive area from
the point of view of the actors involved (Glaser, 1998). Grounded
theory is best for answering questions of the form: “What is going
on here?” Schreiber and Stern (2001) argued that grounded the-
ory is useful for when we want to learn how people manage their
lives in the context of a problematic situation and about the pro-
cess of how people understand and deal with what is happening
to them. An explanation of a phenomenon is developed that iden-
tifies major categories, their relationships, context, and process; a
grounded theory of a phenomenon is much more than a descriptive
account (Becker, 1993).

Co-discoverers Barney Glaser and Anselm Strauss named the
method “grounded” because a theory is systematically generated
from a broad array of data through a rigorous process of con-
stant comparison. Grounded theory is different from the dominant
logico-deductive methods of inquiry because, rather than begin-
ning with a theory and systematically seeking evidence to verify it,
grounded theory researchers gather data and systematically gen-
erate a mid-range substantive theory grounded on that data.

Grounded theory is like Agile software development in the sense
that it is deceptively simple conceptually, yet rigorous and disci-
plined in practice. Fig. 1 is reproduced from Adolph et al. (2011)
and shows how we visualize the process of grounded theory.

(A) A researcher begins collecting data on a phenomenon of inter-
est, and analyzes the data by searching for patterns of incidents
to indicate concepts. Concepts are the building blocks of a
grounded theory, and conceptualization is one of its distin-
guishing traits. While Glaser tends to use the terms “concept”
and “category” interchangeably, we chose to think of categories
as an aggregation of concepts.

(B) The theoretical properties of a category are developed by com-
paring incidents in incoming data with previous incidents in
the same category. During the analysis, the “core category” is
developed. The core category captures the most variation in
the data (Glaser, 1978) while addressing the main concern of
the study participants. The process of generating categories and
their properties continues until the categories become “satu-
rated”; that is, when further collection of data does not add any
new properties to the existing categories, the incidents are said
to be interchangeable.
(C) After saturation, the substantive theory is compared to theories
described in the literature. The literature search is deferred to
late in data collection to avoid forcing pre-conceived concepts
on the substantive theory being developed from the data.

S. Adolph et al. / The Journal of Systems and Software 85 (2012) 1269– 1286 1271

ry me

(

t
w
t
a
d
p
S
e
e
a

d
s
s
g
c
d
d
o

2

d
u
a
r
s
r

Fig. 1. The grounded theo

D) Throughout the process, the researcher writes memos captur-
ing his or her thoughts and analytic processes; the memos
support the emerging concepts, categories, and their relation-
ships.

From this overview, one could regard producing a grounded
heory as straightforward, mechanical, and rigorous: a process in
hich the researcher makes easy progress. We found it messy,

edious, and difficult. Generating a grounded theory required cre-
tivity and theoretical sensitivity on the part of the researchers to
evelop the theory. Theory development most certainly did not
rogress in a straightforward linear manner. As we describe in
ection 2.5, it involved many false leaps, blind alleys, and dead
nds. Nonetheless, it was an extremely rewarding experience that
nabled us to explain the experience of software engineering from

 very different perspective.
Hoda et al. (2010) and Whitworth and Biddle (2007) have

emonstrated the utility of grounded theory for studying Agile
oftware development. Hoda generated a theory for organizing
elf-organizing teams and, while Whitworth did not completely
enerate a theory, her observations were conceptualized and
onnected to Social Identity Theory. Section 2.5 provides some
escription of how we applied grounded theory in our study; we
escribe our experience with classical grounded theory more thor-
ughly in Adolph et al. (2011).

.3. Grounded theory and literature reviews

Glaser (1978) strongly encouraged grounded theorists to con-
uct their literature reviews after their theory has emerged to avoid
ndue influence by extant theory on emerging theory; however, his

dvice should not be interpreted as ban on conducting a literature
eview prior to undertaking a study, because any study must be
ituated in the context of current work. We conducted our literature
eview in two phases.
thod (Adolph et al., 2011).

The first phase framed how the problem we were exploring
led to the formation of our research question. The review gave
us confidence there was value in conducting this research. Some
of our prior research into software method adoption and use is
cited in our motivation. The second phase of our literature review
was undertaken after we constructed our grounded theory enti-
tled Reconciling Perspectives by comparing extant theory to our
grounded theory. This comparison is described in the discussion
section of this paper.

2.4. Research question

The grounded theory method permits researchers to identify an
actual problem that exists for participants in a substantive area
rather than beginning with what professional researchers may
believe is the participants’ problem. In a grounded theory study, the
researcher works with a general area of interest rather than with
a specific problem until a problem is identified (McCallin, 2003).
The opportunity to determine what was truly on the mind of our
participants appealed to us.

For our study, we worked with a broadly defined problem
statement of “how do people manage the process of software devel-
opment?” Our question did not address Agile methods specifically
because we were interested in creating a model of how people actu-
ally develop software, with an eye to discovering gaps between
that model and current software methods. While we have some
preconceived ideas about potential problems (e.g., coordination,
communication, adaptation), we left our problem statement open
so that we could determine if any of our preconceived ideas mat-

tered to software developers. Had we gone into the field with a
rigorously defined research problem, we likely would never have
learned that the process of Reconciling Perspectives was a way peo-
ple have of Getting the Job Done.

1 ems a

2

2

i
h
o
i
f
n
o
p
i
a
r
c
s
a
n

J
a
p
r
p
t
y
s
c
o

a
a
s
a
a
c
o
s
e
1
c
m
o

S
o
e
m
c
T
a
c

2

s
u
s
t
d
t
i
e
i
a

versations or by observing representatives of the business during
status meetings.
272 S. Adolph et al. / The Journal of Syst

.5. Data collection and analysis

.5.1. Research sites
Field research means going into the field and immersing oneself

n the environment (Emerson et al., 1995). We were fortunate to
ave good personal connections with many software engineering
rganizations, meaning that we did not have to conduct “ambush”
nterviews (opportunistically inviting anyone we met in a hallway
or an interview). These strong connections also created opportu-
ities for the primary researcher to be on site for extended periods
f time. The primary researcher used his personal connections with
rincipals in each of the test sites to invite these sites to participate

n this study. While some (Mulhall, 2003) have expressed concern
bout selecting field sites simply because they are accessible to the
esearcher, when the choice is between ambush interviews at a
onference and an opportunity for an extended engagement, acces-
ibility wins. After agreement was reached between the researchers
nd participants, a formal letter of invitation was sent to the orga-
ization in accordance with University research ethics guidelines.

We engaged in the field study from February 2009 through
anuary 2010, collecting data (using semi-structured interviews
nd participant observation) and analyzing data over the 12-month
eriod. Participant observation was a major data collection method
ather than a supplement to our interviews because it allowed the
rimary researcher to observe what people did rather than having
hem comment on what they believed they did. In total, over the
ear, the primary researcher conducted 20 interviews and spent
ome 42 days observing participants at work. We were able to
ollect field data from the three different software development
rganizations listed in Table 1.

After gaining access to a site, the principal investigator made
 concerted effort to maintain a regular visitation schedule, usu-
lly once a week for local sites and once a month for out-of-town
ites. There were times when we collected data faster than we could
nalyze it. We sometimes stopped the visitation schedule until
dequate analysis had occurred because grounded theory requires
oncurrent data collection and analysis. Unfortunately, the result
f such stoppages was that we had difficulty in re-engaging the
ites. Once a researcher is out of sight, he or she is out of mind,
specially for busy software development teams. In addition, Site

 abruptly dropped out of the study part way through due to cir-
umstances unrelated to the study. The loss of Site 1 was somewhat
itigated by the product customization teams at Site 2 that were

ften deployed like Site 1 at a customer site.
While most teams participating in this study claimed to follow

crum (Schwaber and Beedle, 2002), the reality was that all were
perating in a mixed-methods environment. The Site 1 team was
mbedded within a non-Agile organization. The product develop-
ent teams at Site 2 were using Scrum, while their product support

ounterparts tended to only follow elements of the Scrum method.
eams at Site 3 who participated in this study followed Scrum but
lso worked within the context of a formal stage gated software life
ycle. At the enterprise level, Site 3 was starting an Agile transition.

.5.2. Interviews
Research ethics did not permit us to directly recruit interview

ubjects. When a site agreed to participate in the study, we sched-
led a kick-off meeting with the participant groups to explain the
tudy and, specifically, the ethics of informed consent. People were
hen invited to contact the primary researcher, if they wished to
irectly participate in the study. Some 53 individuals were available
o interview from all three sites according to our count of signed

nformed consent forms. Much to our delight, people responded
nthusiastically to our invitations, and the only real problem with
nterviewing was finding time in a busy individual’s schedule
nd a free conference room. Study participants varied in age and
nd Software 85 (2012) 1269– 1286

experience from front line developers 5 years out of school to
experienced, seasoned individuals with 19 years experience. Most
subjects were directly involved with the creation and delivery of
software, and had job titles such as project manager, software
development manager, business analyst, quality assurance engi-
neer, and developer. Table 2 lists the individuals who participated in
study interviews. All study participants were drawn from the engi-
neering side of the organization and but, unfortunately, the closest
we came to interviewing the business side of the organization was
a project manager and a business analyst.

On average, the primary researcher spent approximately 1 h
formally interviewing each subject. With three of the subjects,
we were able to conduct a formal secondary or follow-up inter-
view to clarify and probe deeper into new concepts that emerged
from their interviews. With most of the other subjects, follow-
up interviews were much more ad hoc, often conducted as casual
conversations in the subject’s work area, after which the primary
researcher quickly jotted down field notes. All interviews, with the
exception of the follow-up interviews, started with the question,
“Tell me in your own words how you create software here at site
x.” Subsequent interview questions were guided by the subject’s
answer to this question. Subjects were often asked to provide sto-
ries of both successful and less-than-successful projects in which
they had participated. As the study progressed, events from partici-
pant observation generated further interview questions. Interviews
were digitally recorded and then transcribed. Observation field
notes were written in lab notebooks and then later scanned.

2.5.3. Participant observation
Our observation data was collected either by observing meet-

ings or by simply sitting quietly in a cubicle and observing what was
taking place around us. The second style of observation was more
passive, and consisted of simply being on site and watching people’s
day-to-day interactions. The primary researcher was frequently
invited to regularly scheduled status and planning meetings, as
well as to ad hoc problem solving meetings. The researcher watched
people asking questions, observed their patterns of movement, and
noted who the “go to” people were. There were also many oppor-
tunities for informal conversations between the researcher and the
study participants. The settings provided opportunities to observe
interactions between people as they stood in front of large “infor-
mation radiators” and conducted ad hoc problem solving meetings
and negotiations. These observations were all captured in our field
notes.

Because participant observation allowed observations of what
people actually did, it served as an important mainstream data
collection method. We considered the participant observation
invaluable because it demonstrated firsthand how participants
interacted. The primary researcher was able to observe phenomena
that would not have been uncovered in interviews, from frustra-
tion with the unreasonable demands of an important client to the
intense negotiation of a sprint planning meeting. He was able to
observe the individuals who served as a group’s “go to” people and
observed how they put aside their tasks to help others. He observed
spontaneous problem-solving meetings, and numerous NERF1 Dart
wars. Participant observation also helped us gather some data on
the business side of the organization either through informal con-
1 NERF is an official trademark of Hasbro Corporation.

S. Adolph et al. / The Journal of Systems and Software 85 (2012) 1269– 1286 1273

Table 1
Study site description.

Site 1 An onsite customer support field office with 7 staff providing operational support and customized enhancements for a large
quasi-government entity. The field support team followed Scrum while the quasi-government organization followed a
waterfall-based software development lifecycle.

Site 2 A small e-commerce product company with approximately 150 employees. This company had two distinct development streams: one
that focused on developing and evolving the core e-commerce engine, and a second stream which customized the engine for clients.
The product development stream used Scrum as the base of their software development method. The product customization teams
followed some Scrum practices at the team level, but mostly followed a waterfall-based software development lifecycle. Three teams
from product development and one team from professional services participated in this study.

r a lar
ately

 team

2

n
A
a
r
t
z
u
w
m
(
p
q
e

2

p
p
T
c
G
l
d
t
l
t
a
t
i
s
i

p

T
I

Site 3 A software research and development center fo
(350 are in engineering). One group of approxim
corporate software development lifecycle, three

.5.4. Document analysis
Two of the organizations (Site 1 and Site 2) made their inter-

al documentation, project data, and status reports available to us.
t Site 1, we had unlimited access to their online bulletin board
nd were able to review their process manuals and weekly status
eports, as well as their corporate organization charts. At Site 2, for
he product development team, most project data such as organi-
ation charts, project time lines, and release plans where posted
p on the large whiteboards that covered the walls. At Site 3, we
ere not given access to internal company documentation. Docu-
ent analysis helped us understand the context of the organization

e.g., the organizational charts), and the event history derived from
roject plans and status reports. From these, we were able to create
uestions to ask interview subjects about what happened at those
vents.

.5.5. Sampling
Grounded theory does not use statistical sampling because the

opulation under study is that set of concepts that constitute the
henomena rather than individuals experiencing the phenomena.
he sampling strategy must promote the development of suffi-
ient concepts to support a conceptually dense grounded theory.
rounded theory employs theoretical sampling where the ana-

yst “jointly collects, codes, and analyzes his data and decides what
ata to collect next and where to find them in order to develop his
heory as it emerges” (Glaser, 1978, p. 36). In other words, the ana-
ytic process and developing concepts provide the direction for
he investigator to find further incidents to develop the properties
nd dimensions of the concepts. Theoretical sampling is driven by
he emerging categories and hypotheses; therefore, it is an ongo-
ng process that cannot be pre-determined. Theoretical sampling

upports the development of an emerging theory that is tightly
ntegrated.

We found starting the sampling process to be
roblematic—somewhat analogous to the bootstrap problem.

able 2
nterview subject description.

Subject Id Role E

Site 1 Subject 1 Branch/Project Manager 1
Site 1 Subject 2 Developer 5
Site 1 Subject 3 Developer 7
Site 2 subject 1 Team Leader/Mentor/Developer 1
Site 2 Subject 3 Business Analyst 5
Site 2 Subject 4 Software Development Manager 1
Site 2 Subject 5 Team Lead/Mentor/Developer 6
Site 3 Subject 1 Team Lead/Developer 8
Site 3 Subject 2 Team Lead/Developer 1
Site 3 Subject 3 Software Development Manager 1
Site 3 Subject 4 Architect 1
Site 3 Subject 5 Development Manager 1
Site 3 Subject 6 Lead Architect/Project Leader 1
Site 3 Subject 7 QA Manager 1
Site 3 Subject 8 Lead Program Manager 1
ge multi-national software product vendor with over 1250 employees locally
 40 people participated in this study. While the organization officially followed a
s in the study group were actively following Scrum.

The evolving theory guides the sampling process but, without any
data to analyze, where do you start? We “booted up” the process
using “judgmental” (Marshall, 1996) sampling to recruit our first
interview candidates. Our goal was to begin with a variety of
views, and frame the topic by asking both line developers and
managers from different companies to tell us their stories about
how they managed the process of software development. This first
phase generated many, many open codes capturing how people
practiced software development. Clustering the codes quickly
saturated (no new data) the categories directly related to how
people create software. At a conceptual level, people pretty much
create software the same way; however, we were interested in
how people manage the process of software development.

2.5.6. Analysis
We followed the grounded theory practice of coding and ana-

lyzing our data as it was collected (Glaser, 1992). As new data were
collected, they were compared to existing concepts. We used what
we learned from the analysis to adapt our interview and observa-
tion protocols. Insights we had while coding the data and clustering
the codes were captured in memos. We used Atlassian Confluence
(a Wiki) to manage the data and memos.

There are three coding phases in classical grounded theory:
open coding, selective coding, and theoretical coding. Open cod-
ing (also referred to as substantive coding) generates concepts from
the data that will become the building blocks for the theory (Glaser,
1992). The process of doing grounded theory is based on a concept-
indicator model of constant comparisons of incidents or indicators
to incidents (indicators) (Glaser and Strauss, 1967). Indicators are
actual data, such as behavioral actions and events observed or
described in documents and in interviews; they are often captured

in the words of the participants (Strauss, 1987, p. 25). An indicator
may be a word, a phrase, a sentence, or a paragraph in the data being
analyzed. Concepts or categories are building blocks for a grounded
theory. They can be behaviors, or factors affecting behaviors, which

xperience Education

3 years BA
 years MSc Computing Science
 years BSc Computing Science
9 years

 years BASc, Systems Engineering
0 years MSC Software Engineering

 years MSC Mechanical Engineering
 years BMath
3 years
3 years BASc
4 years, 5 years as a developer Self-taught software developer
0 years BA English literature
6 years experience BSc
2 years BASc Electrical Engineering
2 years

1 ems a

h
i

a
s
a
f

b
i
t
t
e
d
“
t
t

v
i
g
T
r
d
p
v
c

t
c
c
n
t
t
c
c
o
v
i

b
c
o
w
t
t
t
e
c

t
d
v
a

274 S. Adolph et al. / The Journal of Syst

elp to explain to the analyst how the basic problem of the actors
s resolved or processed (Glaser, 1978).

During open coding, concepts are generated by asking gener-
tive questions (Glaser, 1978, p. 57) such as “What is this data a
tudy of?”, “What category does this incident indicate?”, “What is
ctually happening in the data?”. For example, when reading the
ollowing passage in an interview transcript:

“Otherwise, we have no control. And ah we’ll never make our
dates. Another example of a project that ran rampant and it
ah technically was on time and on budget, but there was so
many change requests that it almost tripled in budget through
the process of the project. And we um at the beginning of the
project they cut out all the scope and every single piece of it got
put in back through the course of the project. The project was
supposed to take six months; it took a year and a half. It was
supposed to be under $500,000; it took up $1.5 million. Um,
things like ah they didn’t do a legal review until it was way just
before they launched” Site 1 Subject 1

We asked “what is going on here?” A project had run rampant
ecause the original project leadership abdicated responsibility;

t was not until new leadership was put in place that control of
he project was regained and the project delivered. We captured
his passage as an indicator, tagging it with the in vivo code “Oth-
rwise we have no control”. When we reflected on “What concept
oes this incident indicate?” what immediately came to mind was
Leadership” or, in this example, the lack of it. We immediately jot-
ed down a conceptual memo referring to leadership as something
hat steers a project toward completion.

More indictors were developed with further reading of the inter-
iew transcript, and each new indicator was compared to previous
ndicators and concepts, once again asking the questions “What is
oing on here?” and “What category does this incident indicate?”
hroughout this process of constant comparison, new insights were
ecorded as memos, fleshing out the concept of Leadership and
eveloping its properties and dimensions. Open coding is a tedious
rocess, and it often took two or three days to code a 1-h inter-
iew. Field notes captured during participant observation were also
oded.

Open coding generates concepts very quickly, and it is easy
o become enamored with concepts that support pet or precon-
eived ideas and also to become overwhelmed by the number of
oncepts. While the concepts are exciting and interesting, they
eed to be integrated into a story that explains how people resolve
heir main concern. We recognized that the constant compara-
ive method was invaluable for helping us prune concepts because
oncepts must “earn their way into the theory”. Many exciting
oncepts simply fell by the wayside because we could not find
ther incidents to support them or because there was not enough
ariation to differentiate the concept from others we had already
dentified.

Selective coding involves identifying the core category that
est explains how study participants resolve their central con-
ern. Without a core category, there is no grounded theory. The
utcome would be, at best, an interesting collection of concepts
hich support thick description. Using grounded theory, we aimed

o construct a well-integrated set of hypotheses that explained how
he concepts operated. Finding the center of gravity is a metaphor
hat for us best describes the process of selective coding and
xplains the role of the core category in integrating closely related
oncepts.

Discovering the main concern (that is: what problem people are

rying to resolve) helped us construct the core category. When we
irectly asked people to identify their main concern, we received a
ariety of answers; but, as we sifted through the data, we observed

 pattern of near angst with Getting the Job Done. We were trying
nd Software 85 (2012) 1269– 1286

to understand how people managed the process of software devel-
opment to get the job done.

There were many false starts for selective coding. One of our
early false starts was considering the concept of “Scouting” as
our core category. “Scouting” had much appeal as a core category
because it confirmed what many of us believe to be true about the
process of software development: it is a wicked problem (Rittel
and Webber, 1973) where a solution requires an unpredictable
exploration of unknown and possible dangerous territory. “Scout-
ing” was certainly a recurring pattern in our data; it met some of
the criteria for a core category, and could be seen as a method for
Getting the Job Done. On the other hand, the “Scouting” category did
not explain most of the behaviors or events in our data. “Scout-
ing” did not explain why people could go dark, or how experience
and leadership influenced the process. Finally, it did not explain
the efforts people made to “get everyone on the same page”. As we
directed our data collection to develop the properties of Scouting,
we saw more and more incidents in the data that highlighted the
need to manage communications between individuals and groups.

After more false starts, the concept of “Bunkering” began to
emerge as another candidate core category. We conceptualized
“Bunkering” as a boundary-setting process for how individuals and
groups protected themselves from complexity and uncertainty by
limiting their scope of concern. We invested considerable effort
developing the “Bunkering” category because it seemed to explain
all the data we were collecting; however, the resulting theory failed
Glaser’s quality criteria of parsimony. The theory of Bunkering was,
in reality, many related theories, such as one describing the process
of software development, another describing how people engage in
a software project, and another describing the influence of leader-
ship and personal relationships on how people engage in a software
project. A factor contributing to the lack of parsimony was our
lack of conceptualization. The concepts we were using to try to
build the theory were too literal. We resolved this issue by ask-
ing the generative question: “What is actually happening in the
data?” From this reasoning, the category “Reconciling Perspectives”,
a process that participants use to reconcile their different points of
view and negotiate compromises, was constructed. It was surpris-
ing, once we constructed a core category that “fit”, how quickly we
could integrate the theory around it, like objects being drawn into
an orbit. It made us recall Glaser’s observation that the theory will
integrate if we do not force our pre-conceived concepts on it.

“Theoretical codes conceptualize how the substantive codes may
relate to each other as hypotheses to be integrated into the theory”
(Glaser and Holton, 2004). Open coding breaks the data open and
generates categories as the building blocks for the theory but a
grounded theory is not a loose collection of categories. A grounded
theory explains how people manage a problem through an inte-
grated set of hypotheses. For example, two categories generated
during open coding were “Experience” and “Reaching Out”; they
may be theoretically coded as causal and associated with degrees.
The more experience an individual has, the greater the likelihood
he or she will reach out to others in order to find compromises.

Theoretical codes are not mutually exclusive and other theoreti-
cal code families, such as the “Strategy” family, describe how in our
emerging theory individuals maneuvered others to remove imped-
iments to “Getting the Job Done by Reconciling Perspectives”. For us,
theoretical codes illuminated relationships between categories and
provided a vocabulary for describing those relationships.

The primary researcher collected all data and performed the
detailed analysis of the data, while the other researchers provided
guidance in clarifying, elaborating, and consolidating the emerg-

ing concepts. During the many false starts and blind alleys, the
other researchers provided “sober second thought” to restart the
analysis by simply asking generative questions of the primary
researcher, such as “What is the data really indicating?” and “What

ems a

i
t
c
l
n

2

a
o
o
r
t
A
p
r
e
t
p
b
c
v

w
fi
e
d
i

(

(

i
i
i

-

-

-

-

t
r
i
t
a
A
t
d
n
a
a

r
c

S. Adolph et al. / The Journal of Syst

s really going on here?”. Some of the most productive collabora-
ions occurred when the other researchers suggested alternative
oncepts to those proposed by the primary researcher. These col-
aborations helped sharpen the emerging concept and pointed to a
eed for further data collection.

.5.7. Validity
Researcher bias is certainly a threat to validity in any research

nd even more so in qualitative research because the results are
ur interpretation of the data. While another researcher analyzing
ur data may have a different interpretation of the data than ours, if
esearchers follow grounded theory practices, their theory must fit
he data and offer the best explanation for the majority of the data.

 useful metaphor may be to liken this to the work of two painters
ainting the same sunset. Unless we ask them to provide a hyper-
ealistic descriptive representation of the sunset, the painters will
ach interpret the scene differently and offer different insights into
he nature of the sunset beyond what is possible in a descriptive
hotograph. One painter may choose to highlight the brilliance and
eauty of the sunset, while the other may highlight the feeling of
alm as another day draws to an end; however, both paintings are
alid interpretations supported by the data.

The quantitative criteria for research rigor and quality, with
hich software engineering researchers may be familiar, do not
t with qualitative tenets. Just as we are trying to answer a differ-
nt type of question with qualitative approaches, we need to follow
ifferent criteria for rigor. We can frame the grounded theory rigor

ssue with two questions:

1) Is the story expressed in the theory a story that is supported by
the data and not a fabrication?

2) Is the theory a good story, one that people will find interest-
ing, that adds to the known body knowledge, and is useful for
informing policy?

Lincoln and Guba (1985) answered these questions by defin-
ng the frequently cited criteria of trustworthiness for naturalistic
nquiry, which has four aspects: confirmability, dependabil-
ty/auditability, credibility, and transferability.

 Confirmability: conclusions depend on subjects and conditions
of the study rather than the researcher.

 Auditability: the study process is consistent and reasonably sta-
ble over time and between researchers.

 Credibility: the research findings are credible and consistent, to
the people we study and to our readers. For authenticity, our
findings should be related to significant elements in the research
context/situation.

 Transferability: the findings/conclusions can be transferred to
other contexts and help to derive useful theories.

The interpretive nature of qualitative research makes replica-
ion of results difficult, but we demonstrated that our results were
eliable by making them auditable. We maintained logs of our
nterviews and observations, which included date, time, and loca-
ion. We created a large bank of both theory and process memos
nd have offered thick descriptions of concepts and categories.
uditability and thick description supports credibility, as does data

riangulation. We gathered data using different mechanisms and
ifferent types of sites. We gathered data using multiple tech-
iques, such as interviews, participant observation, and document
nalysis. Data were collected from sites with different project types

nd different sizes of organizations.

Another threat to validity was researcher bias, where the results
eflected the opinions of the researcher rather than what was indi-
ated by the data. Researcher bias was mitigated by using the
nd Software 85 (2012) 1269– 1286 1275

grounded theory approach to constant comparison and by the
researchers explicitly stating their biases.

A significant source of bias in this study was that the data was
obtained from people who mostly have what we could refer to as
strong personalities, some even to the point of extroversion; these
subjects commented on problems associated with other people not
talking to one another. Unfortunately, we could not actively recruit
into the study examples of individuals who were reluctant to talk,
so our interview data was biased toward those who like to talk. This
bias was partially mitigated by our observation of teams during the
study period, which included those team members who were not
inclined to participate in the interviews.

Another interview bias was that all participants in this study
were recruited from the engineering side organization rather
than the business side of the organization. While several of the
senior people interviewed in this study have experience playing
quasi-business roles (e.g., project manager), this remains another
limitation for our study.

3. Results

Software development takes place in the context of a diverse
organizational Eco-system where an Acquirer requests a Supplier
to perform a Job for them. To perform a Job, the Supplier and
Acquirer must agree on their expectations of the Job, including the
Work Products that will be delivered as part of the Job and the
schedule for their delivery. The Supplier creates the Work Products
for the Job and delivers them to the Acquirer for acceptance. The
diversity of the organizational Eco-system, with the narrow and
different specializations of the Acquirer and Supplier, may lead to
a Perspective Mismatch where those involved in the process of soft-
ware development have different expectations of the Job in terms
of Work Products and schedule.

We discovered that people use a process of
Reconciling Perspectives to manage the process of software
development and to resolve the problem of Perspective Mismatch.
Their main concern is Getting the Job Done and the different
Perspectives individuals have of a Job impede Getting the Job Done.
Reconciling Perspectives is the basic social structural process
people managing the process of software development use to
resolve Perspective Mismatches and remove impediments to
Getting the Job Done. This is an iterative and recursive process;
iterative because gaps in knowledge may require repeated appli-
cations of the process to fully reconcile the Perspective Mismatch,
and recursive because reconciling a Perspective Mismatch may
lead to the discovery of another mismatch that must be resolved
before the original Perspective Mismatch can be resolved. Fig. 2 is a
schematic of the process.

In Reconciling Perspectives, there are two clear stages
that account for variations in behavior: Converging and
Validating. During Converging, individuals try to reach a shared
Consensual Perspective by Reaching Out and Negotiating Consensus.
After achieving a Consensual Perspective, the individuals validate
the Consensual Perspective by creating the Job Work Products during
Bunkering and then judging them during Accepting. The process
has four properties:
Scope the number of individuals in the organization affected

by the Perspective Mismatch.
Cycle Time the interval of time from when the

Perspective Mismatch is detected until the
reconciliation is validated.

Communications the frequency, volume, and diversity of Communication

between individuals in the organization.

Team Dynamics the capability of a team to manage their
Communications.

When engaged in the process of software development, whether
as an Acquirer or a Supplier, individuals have a point of view

1276 S. Adolph et al. / The Journal of Systems a

o
W
o
C
a
P
A
p
t
n
R
e
t
C
d
t

m
a
e
m
n
W
(
t

e
f
s
m
i
p
i
m
q
e
c
p
i
i

w
T
C

Fig. 2. Reconciling perspectives.

r Perspective which is how they see and understand a Job.
hen individuals reflect on Communications they have heard or

bserved regarding a software project, if their interpretation of
ommunications does not match their expectations then there is

 Perspective Mismatch that can impede Getting the Job Done. This
erspective Mismatch can impede the project because Suppliers and
cquires may have different expectations of the value, quality, and
riority of Job features, Job Work Products, and the schedule that
he Work Products will be delivered to. When individuals recog-
ize a Perspective Mismatch, they start a Converging process by
eaching Out to engage others in Reconciling Perspectives. If the oth-
rs agree to engage, then the parties begin Negotiating Consensus
o create a common Perspective or Consensual Perspective. A
onsensual Perspective may be as simple as reaching an informal
ecision, or may be a formal signed off agreement that specifies
he Job.

While the Consensual Perspective removes an impediment to
oving forward, it is only tentative because the parties are each

ssuming that they have a better understanding of how the oth-
rs see the problem and its solution. While their Communications
ay no longer indicate a Perspective Mismatch, the process is

ot complete until it is validated (Validating) by creating the
ork Product during Bunkering and presenting it to the Acquirer

Accepting). During Bunkering, people prefer to focus on creating
he Job Work Products with minimal interference.

Reconciling Perspectives is characterized by its observable prop-
rties of Scope, Cycle Time, and Communication. The process varies
rom the large scope, where acquiring organizations engage with
upplier organizations through formally mandated and structured
eetings, to the small scope and ad hoc that may begin with one

ndividual seeking out another and asking: “Can we talk?” The
rocess Cycle Time may be short, with only a few minutes elaps-

ng between Reaching Out and Accepting, or may be long, requiring
onths until a Work Product is accepted. Communication is the fre-

uency and diversity with which people engage with others and
xchange ideas. People may be actively and frequently communi-
ating, sharing, and exploring ideas, and negotiating features and
riorities, or they may be quiet and isolated. People may only share

deas with their immediate colleagues, or they may seek diverse
deas beyond their immediate colleagues.
The outcome of the process is strongly related to Team Dynamics
hich is the team’s ability to manage communications.

he degree to which an individual or team is open to
ommunications is captured by the Team Dynamic property
nd Software 85 (2012) 1269– 1286

of Openness to Communications, which ranges from Exposed
to Cut-off. One property of Team Dynamics that influences
Openness to Communications is Personal Strength or the propensity
of an individual to engage others. In all the projects observed
during this study, a common success driver is the presence of an
individual or group of individuals who have the Personal Strength
to initiate and engage in this process. While Personal Strength is
partly an innate trait of the individual or group, it is also related
to the individual’s or group’s level of Experience. Experienced
individuals tend to have developed a diverse set of Back Channels
which they utilize to help them increase the diversity of their
Communications and detect when something is amiss. A charac-
teristic of more experienced individuals/groups is the increased
numbers of informal social networks they create. Personal Strength
is also the ability to prevent becoming Exposed by knowing when
to say “no” and decline engagement offers from others that will
divert attention or interfere with Getting the Job Done.

Managing Communications is a key skill for
Reconciling Perspectives because there is a Communications
tension between the Converging and Validating phases of the
process. The Converging phase requires that individuals and
teams be open to Communications, such that they have the
opportunity to reflect on what they are seeing and hearing and
detect Perspective Mismatches. Individuals and teams must be
open to engaging in negotiations, and be able to communicate
effectively enough to converge their Perspectives and reach a
Consensual Perspective. During the Validating phase, though,
individuals and teams must focus on Getting the Job Done by
creating the Job Work Products; therefore, during Bunkering, they
prefer to reduce Openness to Communications in order to min-
imize distractions. This works at cross purposes to the needs
of Reconciling Perspectives where they must remain open to
Communications. To run to one’s cubicle and work in isolation
creating Job Work Products risks Cut-off, where an individual or
a team disconnects from Communications and therefore misses
Communications indicating Perspective Mismatches. In contrast,
not restricting Communications can leave an individual or team
Exposed, wasting energy and not Getting the Job Done, because
they are engaged in negotiations to resolve constantly shifting
requirements and priorities, or being diverted to work on other
Jobs.

The Team Dynamic property of Leadership can not only encour-
age inter-personal engagement but also protect individuals from
becoming Exposed, with the resulting time wasting interference.
Leadership from an individual’s manager, or from a respected
thought leader within the organization, boosts Personal Strength by
giving individuals the confidence that “their backs are covered”
When individuals or groups believe their backs are covered, or
believe that they will not be sanctioned for raising issues, they are
more likely to take risks and reach out. Leadership also plays a role
in moving the process forward by actively encouraging people to
raise issues, confront Perspective Mismatches, and make decisions
to resolve them. Interview subjects used phrases like, “drum beat-
ing” and “energizing” to describe efforts to by leaders to encourage
people to communicate and reach out.

Reconciling Perspectives is a fragile process that is stalled by inde-
cision and disengagement, and Leadership drum beating creates
a rhythm to keep the process from stalling or to restart a stalled
process. Teams that were observed making progress had effective
Scrum Masters who diligently maintained the rhythm of the Scrum
process and worked to remove impediments that could stall the
team. For many teams, the Scrum Master was a subject matter

expert and was, therefore, the “go to” person when an individual
was stuck for both that team and other teams. It was not unusual to
see a line-up forming around some individual leaders. There were
also numerous situations where the process had stalled and other

ems a

i
p

E
v
s
r
C
r
s
c
S
e
t
l
z
o
e

3

n
a
J
E
t
o

c
t
m
p
t
a
t
r
c
m

l
w
a
q
a
t
w
b

3

d
t
G

S. Adolph et al. / The Journal of Syst

ndividual team members took it upon themselves to restart the
rocess.

Effective leaders balance Openness to Communications between
xposed and Cut-off for the team by buffering or Sheltering indi-
iduals from interruptions and distractions during the Bunkering
tage of the process by relieving others of some of their
esponsibility for maintaining the frequency and diversity of
ommunications. While protecting individuals from wasteful inter-
uptions, effective leaders are also aware of issues that are
ufficiently important to warrant interruptions because they indi-
ated a Perspective Mismatch that affects the sheltered individuals.
ome leaders do not balance Openness to Communications and
ither leave the team Exposed or aggressively shelter teams from
he organizational Eco-system. We encountered several stories of
eaders actually cutting their team off from the rest of the organi-
ational Eco-system. In some cases, the Cut-Off was so extreme that
ne person referred to a team as a “black hole” from which nothing
ver escaped.

.1. The software development context

Software development occurs in the context of a greater orga-
izational Eco-system where an Acquirer has a Job they wish done
nd a Supplier, who has at least some of the ability to perform that
ob, creates Work Products that realize the Job. The concept of an
co-system provides the context and vocabulary for understanding
he theory of Reconciling Perspectives and is not an integral concept
f the theory.

The term “eco-system” best describes the software development
ontext in the organizations we observed. Software development
akes place in a confusing and chaotic mix of formal and infor-

al software methods, corporate policies, competing interests,
ersonal agendas, personality types, and formal and informal rela-
ionships. In ecological terms, there is a great deal of bio-diversity,
nd organizations are anything but a monoculture. At all three sites,
here was no single software development methodology used;
ather, each site used a collection of methods existing within the
ontext of a perceived interpretation of an advertised corporate
ethod. As one subject explained:

“Our team uses the scrum process. Um, so but unfortunately we
have to fit within a larger organization that’s using ah a waterfall
methodology” Site 3, Subject 3

Differences between groups were further highlighted by the
ayout of the workspace and how the teams under study worked

ith other teams in the organization. For example, Site 1 involved
 small Scrum team working within the bureaucracy of a large
uasi-governmental agency. The workspaces for the governmental
gency were uniform in color, shape, size, and furniture whereas
he Scrum team was relegated to what, at best, could be called a
indowless basement with office furniture that appeared to have

een purchased at a variety of garage sales.

.2. Getting the job done

The central concern of everyone interviewed and observed
uring this study was Getting the Job Done, that is, delivering
he best Work Products they knew how create. Impediments to
etting the Job Done were a major source of frustration.

“Um for myself particularly the concern is ah being blocked to

something. I can’t do, I can’t achieve by myself. I know that sup-
plying this would be sort of would hamper progress (unclear).
Sometimes maybe to the point where the project is completely
halted for a long period of time until it’s resolved. And so I think
nd Software 85 (2012) 1269– 1286 1277

that’s my main concern is um is really just not being able to do
the work that ah that needs to be done” Site 1, Subject 3

Participants defined Getting the Job Done as creating working
software that:

• Appeases the customer or even makes the customer happy,
• Satisfies the software team members’ needs to see the end and

achieve a feeling of accomplishment, and
• Satisfies the team members’ desires to minimize technical debt.

Despite marketing hyperbole of “delighting customers”, those
participating in this study set the customer satisfaction bar low at
appeasement or, more forthrightly, at “anything that keeps the heat
off”.

“They feel that they’re under pressure so they just have to find
a way to get it to work” Site 2, Subject 5

This was such a frequently recurring pattern that we referred
to it as the “heat calculation”, where individuals and teams chose
courses of action that least antagonized a client. In one observed
status meeting, a team explicitly debated whether they would draw
“less heat” by delivering a deficient product on time or by delaying
the release of the product.

We did not observe such a strong concern for customer appease-
ment in the teams that were not customer facing. For these
teams, Getting the Job Done was described more in terms of tech-
nical craftsmanship. Much of the frustration expressed by software
developers during the interviews in Getting the Job Done was not
only to deliver software to the Acquirer but to deliver quality soft-
ware because all software developers participating in this study
took pride in their craft and had a strong desire to create quality
work.

“I don’t really enjoy solving a problem as much when I’m given
just an hour to deliver something or a few hours to deliver some-
thing that I know will—if I don’t spend more time it won’t be as
good quality as it should be.” Site 2, Subject 5

3.3. Perspectives mismatches

Throughout this study we discovered that a frequent and diffi-
cult problem in software development is “getting everyone on the
same page”

“And the biggest problem you have is—I can think of one case
recently where we had the team lead here and—one of the
managers here and a team lead at the (unclear) team kind of
discussing this bug and the three of us were discussing it in lieu
for a week only to realize that all of us had completely different
interpretations of it. . . So we weren’t even on the same page on
it. So it leaves more room for miscommunication which is—not
a good problem in software.” Site 2, Subject 3

Everyone seems to have a different point of view or Perspective
about what the Job is and the process for delivering the Job. Much
like how members of a choir must all sing from the same sheet of
music, everyone participating in the software project must also see
the Job the same way for the Job to get done (Getting the Job Done).
The inability to get everyone on the same page is a significant
impediment to Getting the Job Done. We referred to the source
of these impediments, created by differing points of view to
Getting the Job Done, as a Perspective Mismatch. There are four broad

groups of Perspective Mismatches based on the topic of the mis-
match (Table 3):

The diversity of the organization Eco-system contributed to
the Perspective Mismatch. There were many instances where

1278 S. Adolph et al. / The Journal of Systems and Software 85 (2012) 1269– 1286

Table 3
Perspective mismatches topics.

Features Different Perspectives regarding the behavior, scope (what features are in and what features are out), and quality of Job features.
Priorities Different Perspectives on the order and relative importance of Job features with respect to other Job features and other Jobs.

rk Pro
ct is re

i
a
t
i
w
S
o
A
c
f

G
i

o
t
p

3

i
G
e
P
(
p
G
b
c
i
l

u
i

3

F
b
a
e
a
b

Method and work products Different Perspectives regarding what Wo
Schedule and status Different Perspectives when a Work Produ

ndividuals did not understand how others in the organization
ssociated with the software project performed their work and con-
ributed to the Job. One of the justifications for a software method
s that it provides a common perspective for all involved in a soft-

are project for how software will be created in the organization.
oftware methods are supposed to set the expectations of every-
ne associated with the project and get them on the same page.
ll organizations participating in this study did claim to have a
orporate-wide method but what we saw in most projects was that
ew people had any interest in the corporate methodology:

“Um, I’ll be honest—as somebody who’s a lot further down the
chain I very rarely pay attention to that process or the milestones
associated with it. I hear vague um speeches of it. You know,
we’re hitting EMRA and whatever, or whatever the milestone
name happens to be. And there are big meetings to prep for it.
But as somebody a lot further down the chain, to me, it’s just
dates” Site 3, Subject 1

This Perspective Mismatch creates friction that can impede
etting the Job Done, where individuals only understand their local-

zed area:

“I just find it creates a lot of friction because people don’t—only
understand their layer” Site 3, Subject 6

Perspective Mismatches were not only the result of differences
f opinion on what features should be included in system, but also
he result of quality trade-offs. A significant area of mismatch was
riorities, what should be delivered first:

“you know each person has their own ah priorities”. Site 3, Sub-
ject 7

.4. Converging

Converging is first stage of Reconciling Perspectives, where
ndividuals recognize that a Perspective Mismatch is impeding
etting the Job Done and reach out (Reaching Out) to engage oth-
rs in negotiations (Negotiating Consensus) to converge their
erspectives sufficiently and decide on a course of action
Consensual Perspective). While the Consensual Perspective can tem-
orarily remove the Perspective Mismatch as an impediment to
etting the Job Done, it is only a hypothesis because it is reached
y individuals agreeing that they are on the same page. The pro-
ess of Reconciling Perspectives is not complete until the consensus
s validated (Validating) by the delivery of a Work Product. It’s a bit
ike the old expression “the proof is in the pudding”.

The Converging stage ends when everyone agrees that they
nderstand what the Job is and can decide on a course of action

n the form of a Consensual Perspective.

.5. Reaching out

Reconciling Perspectives begins when individuals reflect on the
eedback in the Communications they are receiving about the Job,
elieve Getting the Job Done is impeded by a Perspective Mismatch,

nd begin Reaching Out. They reach out by inviting others to
ngage with them to resolve the mismatch. Perspective Mismatches
re discovered when individuals critically reflect on what they
elieve they are hearing in the Feedback in their Communications
ducts are created and when those work products are delivered.
ady and the current quality of Work Products.

with others (verbal or written), and realize their understanding
or expectation of the Job does not match the content of those
Communications. Reaching Out may occur in an ad hoc manner when
an individual takes the initiative to question something that, for
them, does not sound right.

“Mostly because I find any issue especially let’s say a bug fix
which doesn’t look like it’s super huge—when you need you
know more that you know 2 days worth of discussion about
it—something’s off. Either the thing is way bigger and actually
requires refactoring or you’re not understanding one another”
Site 2, Subject 3

Without the Communications, there is no opportunity for
Feedback, and without Feedback, there is no opportunity to reflect
and determine if what one is hearing matches one’s Perspective.
One interviewee succinctly expressed the need for Communications
when describing a challenged project:

“But there just weren’t enough conversations taking place” Site
2, Subject 3

Once an individual recognizes the possibility of a
Perspective Mismatch, he or she needs to reach out and engage
others to investigate and resolve the mismatch. Personal Strength
is the propensity of individuals to act when they believe a
Perspective Mismatch is impeding Getting the Job Done. This can be
problematic if the individual’s Personal Strength is low. Many of
the interview subjects voiced the common stereotype of software
developers as quiet or introverted individuals who are reluctant to
reach out.

“And maybe that’s another thing. Is the—is this sort
of—developers aren’t the most social people at times right? So
they-they don’t go and speak to people about their problems
necessarily. Being able to—so to some extent maybe it’s a lack
of confidence in the—if you’re seen to ask—or people seem to
think that asking for help is a sign of weakness or something”
Site 2, Subject 4

Leadership contributes to Personal Strength and gives individuals
the confidence that their back is covered when they are raising
issues that may have serious consequences for the Job.

“as long as you’ve been open with <name> and treat him with
respect and integrity um he will back you up. So, you’re not going
to get—you’re not going to get backstabbed by him. And that’s
a very important thing. It relaxes me and I think it goes down
to you—you—he gives us support. . . So, I would say that it—it
allows me to take some—some risks if I know what I’m doing is
right and I am open enough about it” Site 3, Subject 8

Leadership also has the potential to shut down individuals who
express concerns about Perspective Mismatches between them and
their Leadership. Leaders are in a position to either support or block
an individual Reaching Out.

“Communication and not being afraid to express ideas and
have-have discussion you know? I’ll have one way of viewing

something or designing something but I don’t feel if—I’m afraid
to say it because I’ll get trampled on by somebody who’s more
experienced or more senior. But everyone is able to offer their
view and kind of like learn—everyone can be involved in the

ems a

P
o
o
R
t

o
p
f

3

m
a
n
a
(
o
v
p
c
d

S
i
t
P
e
a
c
c
i
t
b

a
l
i
a
s
o

m
o
V
i

N
c
m
t

S. Adolph et al. / The Journal of Syst

kind of—the learning experience. And then contribute to you
know—some good quality code being delivered” Site 2, Subject
5

It is not enough for an individual to recognize a
erspective Mismatch and have the Personal Strength to reach
ut, because those individuals who are intended recipients
f reaching out may choose not to engage. The process of
econciling Perspectives cannot continue if the individuals to whom
he person is reaching out will not engage in the process.

“it was very typical of projects that kind of go astray. Where
people live in denial for too long. And—people who voice their
concerns are kind of ignored—until it just bubbles up. I—don’t
think that anybody was really quiet about it. I don’t think that
anybody—who was being realistic or worked on it—like every-
body could say well hey this thing is really not going very well.
I just don’t think that that was percolating all the way up” Site
2, Subject 3, follow-up

Reaching Out transitions to Negotiating Consensus when the
ther parties agree to participate in the dialog. This may be as sim-
le as agreeing to the question “Can I talk to you about this?” or as
ormal as placing an agenda item on a change control meeting.

.6. Negotiating consensus

Negotiation is the activity that stands out in software develop-
ent. It seems that everyone is always negotiating: stakeholders

nd developers negotiate features and budget, development teams
egotiate resources, team members negotiate task assignments,
nd developers negotiate Application Programming Interfaces
APIs) and allocation of behaviors to modules. One interesting
bservation made during this study was that during the inter-
iews no one definitively distinguished between the activities of
lanning, requirements gathering, analysis, and design. All were
ollectively described as negotiation. It could be said that software
evelopment is an ongoing process of negotiation.

Negotiating Consensus is a dialog between an Acquirer and a
upplier intended to converge their expectations for what the Job
s about and to create a Consensual Perspective that will enable
hem to remove impediments to Getting the Job Done created by the
erspective Mismatch. The Consensual Perspective sets the Acquirer’s
xpectations for what Work Products they can expect to receive,
nd also sets the Supplier’s expectations for Work Products they are
ommitting to deliver. Many colloquially view negotiation as a pro-
ess for making trade-offs and, while this is part of negotiation, it
s also a discovery process for both the Acquirer and the Supplier
o share and create knowledge, thereby enabling them to discover
etter informed trade-offs.

Negotiation occurs at all levels and at all scopes, from CTOs,
nalysts, and product managers negotiating product features with
arge external customers, to individual developers negotiating an
nterface. Software development is an ongoing multi-level negoti-
tion. Negotiating Consensus may be a short, single-phase, informal,
imple agreement characterized by this stylized conversation heard
ver and over again between software developers:

Or Negotiating Consensus may be a long, protracted, and
ulti-phased process, cycling repeatedly through many cycles,

f negotiating a preliminary Consensual Perspective and then
alidating the agreement to generate the information necessary to

mprove future decisions.
The properties Cycle Time and Scope characterize
egotiating Consensus. Many negotiations, much like the one
haracterized in Fig. 3, are common conversations, short, and
easurable in minutes if not seconds. The scope of these nego-

iations is very narrow and specific and conducted between
nd Software 85 (2012) 1269– 1286 1279

individuals without much formality or structure. Other negoti-
ations could be between informal groups, or between formally
defined groups such as Scrum teams or even organizational divi-
sions. As the scope increases, the formality of the process increases
to accommodate the more complex coordination needs of the
participants for established meeting times, meeting facilitation
rules, agendas, action items, and follow-ups. There were times
when a Consensual Perspective was reached during a meeting, and
other times when the agreement was to continue investigating an
issue. This type of negotiation was fairly common at the beginning
of projects where Acquirers and Suppliers are negotiating project
scope and budget. A common strategy in these situations was
Progressive Refinement, decomposing large, poorly defined features
into a set of smaller and more precisely defined requirements. Most
groups participating in this study had a multi-cycle negotiation
process for reaching a Consensual Perspective on scope and budget.

A common failure pattern was an excessively long Cycle Time
or stalling during Negotiating Consensus and never reaching a
timely Consensual Perspective. Several challenging projects that
were observed or reported during this study could be explained
by their never reaching an explicit Consensual Perspective.

“I’d-I’d much rather know it has to work. It has to work. It has to
be somewhat releasable—maybe not every iteration but every
month. And with 14 months that’s 14 times it needs to be—and
we weren’t there. We-we were broken for quite a while. Which
took—took—you know—the decision making capabilities away
from the business—which isn’t what we’re about” Site 2 Subject
4

Many of the stories about out-of-control projects, such as the
one above described by Site 1 Subject 1, could in part be explained
as never explicitly reaching a Consensual Perspective. Project par-
ticipants defined their expectations of the Job from their own
mismatched perspectives. In some of these situations, we observed
people stepping in and filling the Leadership vacuum to obtain an
explicit Consensual Perspective. This is an example of Leadership
drum beating, maintaining a rhythm that leads to a decision in a
timely manner. We frequently observed problem-solving sessions
breaking down into arguing about minutiae or hypotheticals. There
were many instances of leaders forcefully driving an agenda, where
the intent was not to force acceptance of the leader’s choice but to
make a decision in a timely manner, even if that decision was to
acquire more data and meet at a later time. This was exemplified by
Site 2 Subject 4’s story of individuals stepping up to recover a near
catastrophic project caught in what could best be called “leaderless
drift”:

“I don’t think—without that step up in leadership—and the other
team lead—once he figure it out as well stepped up as well.
And without that <JOB> wouldn’t—I don’t think I be sitting here
talking to you—not in this company anyway. I think it would
have been—if I’d carried on—it-it just never would have been
released. So it—stepping up—getting everyone to talk—getting
everyone focused”. Site 2, Subject 4

The ability to Compromise, or the cultivation of a
Flexible Response, facilitates the Negotiating Consensus process. If
the opportunity for trade-offs is constrained, Negotiating Consensus
degenerates into a situation where either the Acquirer or Supplier
simply imposes an agreement on the other. In these situations, the
power of Consensual Perspective to resolve the Perspective Mismatch
is weakened, or even nullified, because participants may acquiesce
to the terms imposed by the other simply to move ahead in some

assumed direction. As one senior developer explained it:

“But—if you kind of attempt to have a perfectionist kind of take
on your work it’s a bit of a difficult thing to sometimes weigh

1280 S. Adolph et al. / The Journal of Systems and Software 85 (2012) 1269– 1286

Dev 1 (A cquirer): “Hey can we talk?”
Dev 2 (Sup plier) : “Su re”
Dev 1 (Acqu irer) : “When we talked about this interfac e before I as sumed you were givin g th e contex t, now I find

out that’s not the case. Can you pass me the handle [for] the context?”
Dev 2 (Sup plier) : “Su re”

tiating

b
t
a
P
p
t
n
o
o

w
t
s
f
i
n
h
g
c
e
t

o
J
c
w
t
b
t
i
t
m

w

Fig. 3. Nego

those options and you know you’ll say okay well I can really
see how this should be working. But then you try and get that
kind of developer or technical view that will say okay that’s a
cool idea. And it makes sense but it will take us half a year to
implement. So that just gives you a more realistic perspective
on maybe what—you know—you have one desire but—perhaps
it’s far away from reality” Site 2, Subject 3

We observed three broad strategies for Negotiating Consensus
ased on what we observed as the general approach people took
o resolving their Perspective Mismatch: Translation, Broadening,
nd Scouting. Translation is a straightforward situation where
erspectives are well aligned but the Acquirer and Supplier are sim-
ly using different terminology to express themselves. It was easy
o overhear these conversation conclude successfully with “. . .oh
ow I see what you mean!” Translation was a strategy most often
bserved in informal short cycle negotiations; however, examples
f Translation could also occur during more formal negotiations.

“When we talk story points to our customers, they don’t like
it because it’s um abstract and amorphous to them. They don’t
ah—what they want is predictability. So, for them you know they
don’t care whether we’re saying, “Well, this is a 200 story point
project.” What they care is um how much does the story point
cost and how long does it take to build it? And how much stuff
can I get for it? So, that’s the way we present it to the customer”
Site 1, Subject 1

The second strategy for Negotiating Consensus is Broadening,
here an individual attempts to broaden their understanding of

he Job by trying to understand the other’s point of view. Common
ources of impediment were software developers viewing the Job
rom a technical perspective and not fully appreciating the business
mpact of their decisions, and Acquirers not understanding the tech-
ical consequences of their demands—for example: understanding
ow a request may increase technical debt or limit opportunities to
row the product. The ability or desire to Broaden their Perspectives
ertainly appeared to be a strategy commonly employed by more
xperienced individuals. One developer spoke of broadening in
erms of seeing the context or “bigger picture”.

“I think kind of—one important thing is the context. So if a stake-
holder is only aware of their—small item—is the most important
thing to them in-in the world. But if they’re able to see the big
picture and have an understanding of what the whole big picture
is then I think that allows it.” Site 3, Subject 5

The final strategy is Scouting. In both Translation and Broadening,
ne or both parties have sufficient knowledge to understand the

ob, but cannot express it in a way that the other understands or
ares about. Scouting becomes the Negotiating Consensus strategy
hen neither the Acquirer nor the Supplier has sufficient knowledge

o explain their view to the other party. The negotiation becomes
locked because neither side has sufficient information to answer
he other’s questions. The purpose of Scouting is to discover the
nformation necessary to help the Acquirer and Supplier converge

heir Perspectives and make a decision that removes the impedi-

ent to Getting the Job Done.
A common source of failure for projects was Scouting Blowout

here Scouting continued without end, a Consensual Perspective
 consensus.

was not reached, and no decision was explicitly made on how to
remove the impediment. The Supplier either continued to make per-
ceived progress toward Getting the Job Done by working with their
Perspective of the Job, or remained stuck in Scouting and failed to
deliver the Job Work Products. Both situations lead to unwanted
Surprise. During a retrospective of a near failed project, we observed
exemplars of these situations where a project appeared to have
“wandered through the desert” for 6 months without creating a true
Consensual Perspective.

Converging transitions to Validating when a
Consensual Perspective on what the Job is and what Work Products
are needed is created. The Consensual Perspective is based on a
shared assumption by all participants that they have a shared
Perspective of the Job and that the impediment created by the
Perspective Mismatch has been removed. The development process
can now move ahead.

3.7. Validating

The Consensual Perspective reached during Converging is a
hypothesis that must be tested, and is only validated when
the Supplier creates a Work Product that is accepted by the
Acquirer. There are two stages to Validating: Bunkering, and
Accepting. Bunkering is a quiet stage during which the Supplier
focuses on creating Work Products that satisfy the negotiated Job
requirements. What strongly characterizes this stage is the drop
in Communications between Acquirer and Supplier. Accepting is
the final stage of the process where the Supplier presents the
Work Products to the Acquirer as evidence that they worked from
the same Perspective.

3.8. Bunkering

Whereas during Converging individuals actively engage in
conversations during Reaching Out and Negotiating Consensus,
Bunkering is a “heads down” working “quiet” stage; using the
knowledge gained from the Consensual Perspective created dur-
ing Converging, the Supplier creates the Work Products they believe
will satisfy the Acquirer’s Job requirements. A distinct drop in
Communications and interactions between Acquirer and Supplier
occurs during Bunkering. This “quiet time” is built into software
methods like Scrum, which most teams participating in this study
claimed they were using; however, it also seems to be part
of the culture, regardless of the software method used. Once a
Consensual Perspective is reached, construction of a Work Product
should proceed relatively undisturbed until it is done. The desired,
quiet, undisturbed environment created during the Bunkering stage
contributes to productively creating Work Products.

“we were in a lot of ways kind of flying under the radar. . . There-
fore we didn’t have to answer to anybody—so directly. So we got
a good chunk of time running like that on our own. We got a lot
of stuff done” Site 3, Subject 4

Bunkering is a boundary setting stage and the Team Dynamic

property of Openness to Communications characterizes how per-
meable to Communications individuals and teams are during
Bunkering. During Bunkering, people can completely cut themselves
off from all conversations and other sources of information that

ems a

m
e
t
m
o
b
r

o
f
p
e
t
w
a
J
o

p
a
m
n
h
e

p
u
t
c
R

s
a
r
P
a
w
b
R

S. Adolph et al. / The Journal of Syst

ay reveal to them a Perspective Mismatch. Individuals, and often
ntire teams, cut themselves off from the rest of the organiza-
ional Eco-system and are not open to the Communications that

ay raise indicators of a Perspective Mismatch. Cut-off reduces the
pportunity for the process of Reconciling Perspectives to begin
ecause the opportunity to receive and reflect on Feedback is
educed.

“Like two people who work together and they maybe need to
integrate some stuff with the rest of the team but they kind
of pigeon-hole themselves and you know only talk to each
other but not really interact so much with the rest of the team
members and the end of it iteration approaches and you real-
ize that they’ve been working on something that’s actually
not—you can’t integrate with the rest of the team—with their
code. So—definitely kind of that isolated lack of talking to other
people” Site 2, Subject 3

The opposite extreme of Cut-off is Exposed, where an individual
r group engages with all Communications and therefore cannot
ocus on Getting the Job Done. They have far too much work in
rogress; they are also taking on more, or changing priorities, or
scalations are constantly interrupting them. The diverse nature of
he Eco-system means that not everyone has the same Perspective on
ork priorities and there are numerous instances of people directly

pproaching developers to get what they perceive as a high priority
ob done. Individuals and teams that could not say no became, as
ne project manager put it, they are “their own worst enemies”.

“But you’re your own worst enemy when you do that because
the next thing you know, the BA’s asking this developer for an
estimate on this and can you do that? And oh I found this new
scenario and last week” Site 1, Subject 1

The consequences of being Exposed were often evident in
rojects at the tail end of a waterfall process, when individuals
nd teams were often panicking to remove defects. It was com-
on to see priorities rapidly changing in reaction to discovery of

ew defects, and partially finished work put aside to work on these
igher priority defects. The result was that defect opening rates far
xceeded defect closing rates, and the job simply did not get done.

“. . .most of the developers were not happy about the way things
were (unclear). It was it was—it got to this what we call a bug-
fixing hell of a state. There was so many bugs and we were trying
to fix the bugs a couple of months. There was long days when
we were trying to get this working” Site 2, Subject 1

Bunkering can put Getting the Job Done at risk because of the
otential to suppress Reaching Out. During Bunkering, an individ-
al may encounter an inconsistency between how they understand
he Consensual Perspective and the results they are getting while
reating the Job Work Products but they may be reluctant to start
eaching Out or to engage with others reaching out to them.

“So yes we’ve definitely had the time boxes blown out—by peo-
ple just digging into things and then not making the progress
we expect and sometimes we don’t spot that in time.” Site 2,
Subject 4

Finding a balance between being Cut-off and Exposed is neces-
ary for Reconciling Perspectives to resolve Perspective Mismatches
nd lead to Getting the Job Done. Individuals and teams must
emain sufficiently open to Communications and be able to detect
erspective Mismatches and yet not be Exposed to the rapid changes

nd vagaries of the organizational Eco-system that can interfere
ith Getting the Job Done. This need to find a balance between

eing Cut-off and Exposed highlights the inherent tension of the
econciling Perspectives process.
nd Software 85 (2012) 1269– 1286 1281

“Um ah and I think we still haven’t got to a good place where
we get that balance between you know short term, heads down
focus, but also a sense of where the vision of things are going”
Site 3, Subject 6

Leadership helped find this balance by Sheltering individuals or
teams from the turmoil of the organizational Eco-system. Leadership
frequently protected the team from exposure by standing between
them and the Eco-system. One subject referred to this protective or
buffering role as a “firewall”.

“Sometimes it’s a firewall kind of role. And our (unclear) plays
that role quite a bit as well—a ton. He insulates all of us from a
lot of that stuff” Site 3, Subject 7

A leader in this role was able to stay open to communications
and yet offer some measure of stability to those who were trying to
Get the Job Done. How much a leader needed to stay open to com-
munications was proportional to where the leader believed their
responsibilities lay in the organizational hierarchy.

“the higher up you move in the chain because you’re expected
to-to take on more—more responsibility right? So you’ll only
get—you only really get shielded so far in as much responsibility
as somebody has given you. If you have a reasonable amount
of responsibility you won’t be needed—you won’t need to be
shielded that much” Site 2, Subject 5

Bunkering transitioned to Accepting when the Supplier presented
the Job Work Products to the Acquirer for their acceptance.

3.9. Accepting

During Accepting, the Supplier presents the Job Work Product to
the Acquirer and solicits their approval. Accepting may be as simple
as the Acquirer informally stating, “Ok it’s good” or it may be a for-
mal ceremony for transitioning and Accepting a Work Product. Only
when the Work Product is accepted is there objective evidence that
all involved were likely operating from the same Perspective.

A negative result during Accepting is Surprise, where the
Work Product delivered by the Supplier does not meet with the
Acquirer’s expectations. We observed many situations in which
lengthy Bunkering stages directly influenced Surprise. Long cycle
Reconciling Perspectives processes therefore have a greater poten-
tial to result in Surprise, or in larger Surprises, than shorter cycle
Reconciling Perspectives processes. A near catastrophic Surprise
occurred at one site where Supplier and Acquirer teams effectively
cut each other off for over 6 months.

4. Discussion

This discussion of Reconciling Perspectives compares it to other
relevant grounded theories and extant theory to both situate
Reconciling Perspectives within the existing body of knowledge and
to generate policy recommendations. The Anticipation-eXecution-
Expectation (AxE) model (Hsieh et al., 2006) and Organizing Self
Organizing Teams (Hoda et al., 2010) are two grounded theo-
ries that illuminate some properties of Reconciling Perspectives.
The AxE model emerged out of a study of coordination between
individuals in teams, and suggests the influence that the pro-
cess of Reconciling Perspective has on trust relationships. Organizing
Self-Organizing teams provides greater depth on our concept of
Leadership and the leadership roles that individuals play.

Glaser’s (1978) recommendation, to perform the literature

search after the theory emerges, enables us to use the grounded the-
ory to sensitize us to search for comparative extant theory that may
further explain the situations we observed, and then use the extent
theory with its known body of knowledge to guide policy decisions.

1 ems a

I
t
W
t
1

A
o
R
a
s
w
a

4

e
A
a
o
u
o
t
s

p
t
C

Q

T

m
c
t
c
q
L
h
p
a

w

1

2

3

l
t
i
b
i
i

C
t
S
f

282 S. Adolph et al. / The Journal of Syst

n this discussion, we compare Reconciling Perspectives to Men-
al Model Convergence (Cannon-Bowers et al., 1993; Cronin and

eingart, 2007; Firore et al., 2001; Johnson-Laird, 1983) and Con-
ingency Theory (Burns and Stalker, 1961; Lawrence and Lorsch,
967; Woodward, 1958).

All teams participating in this study claimed to follow an
gile software development method, specifically Scrum, although
ne team later claimed they had switched to Kanban. We use
econciling Perspectives to explain how Scrum teams function, and
lso to explain some of the dysfunctions we observed during this
tudy. Finally, based on what we have learned during this research,
e offer policy recommendations for improving how people man-

ge the process of software development.

.1. Anticipation-eXecution—Expectation model

The Anticipation-eXecution-Expectation (AxE) model (Hsieh
t al., 2006) explains coordination between individuals and teams.
xE emerged as a descriptive framework from a study of culture
nd the impact of intercultural dynamics on global software devel-
pment. What struck the researchers were the mishaps the teams
nder study experienced despite using tools and methods based
n Input-Process-Output (IPO) coordination models, “The inputs,
he processes and the outputs are often apparently well-defined, but
till all kinds of failures occur” (Hsieh et al., 2006, p. 9)

At the heart of the AxE model is a work product handed from
arty to party (e.g., from Acquirer to Supplier) that is described by
he triple:
ontent defines the artifact in terms of what it is made of and how it is

represented (e.g., a use case).
uality defines the quality of the artifact at hand-over time; for

example, is it simply a verbal expression of need or is it a
formal and reviewed specification?

ime specifies the time at which the handover occurs.
We can use AxE to describe the process of software develop-

ent. The Supplier has an anticipated outcome (Perspective) of the
ontent, the quality, and the time they anticipate they will deliver
heir outcome to the Acquirer. The Acquirer has an expected out-
ome (Perspective) of what they believe will be the content, the
uality, and the time when the Supplier will deliver the outcome.
astly, there is the executed outcome: what the Supplier actually
ands over to the Acquirer and the time when the delivery takes
lace. The deltas between the anticipated and expected outcomes
re similar to the Perspective Mismatch in Reconciling Perspectives.

AxE has a three-step process or “waltz” for creating outcomes
here:

. the parties must communicate, and where their anticipated and
expected values are formed (Planning);

. the actual artifacts (work products) are handed over (Execution);
and

. the delta between the anticipated results and the executed
results (the delivered results) is evaluated and communicated
(Feedback).

In the AxE model, a large delta between expectations and results
eads to a decline in trust between the parties. A large delta between
he executed outcome and the outcome expected by the Acquirer
s expressed as Surprise in Reconciling Perspectives. A large delta
etween executed and expected outcomes also results in a decline

n trust between Supplier and Acquirer, whereas a small delta may
ncrease trust.

Reconciling Perspectives extends AxE by offering a model of the

ommunications between Acquirer and Supplier for setting expecta-
ions. If the quality and volume of the Communication between the
upplier and Acquirer does not lead either to recognizing the dif-
erence, specifically, deltas between their anticipated and expected
nd Software 85 (2012) 1269– 1286

outcomes, or if there is insufficient Personal Strength to reach out or
Leadership to encourage individuals to Reach Out, it is unlikely that
the executed result will meet the expected outcome. The Bunker-
ing stage of Reconciling Perspective maps to AxE’s execution phase,
highlighting the need for appropriately managed communications
during execution.

AxE extends Reconciling Perspectives by highlighting the decline
in trust between Supplier and Acquirer when there are significant
deltas between anticipated and executed work products (Surprise).

4.2. Organizing self-organizing teams

Hoda et al. (2010) investigation of self-organizing teams iden-
tified six roles that team members play to facilitate the organizing
of self-organizing teams:
Mentor Guides and supports the team initially, helps them to become

confident in their use of Agile methods, and encourages
continued adherence to Agile practices.

Coordinator Acts as a representative of the self-organizing Agile team to
coordinate communication and change requests from
customers.

Translator Understands and translates between the business language
used by customers and the technical terminology used by the
team in an effort to improve communication between the two.

Champion Champions the Agile cause with the senior management
within their organization in order to gain support for the
self-organizing Agile team.

Promoter Promotes Agile with customers and attempts to secure their
involvement and collaboration to support the efficient
functioning of the self-organizing Agile team.

Terminator Identifies team members threatening the proper functioning
and productivity of the self-organizing Agile team and engages
senior management support in removing such members from
the team.

While the focus of their study was on team self-organization
in companies adopting Agile software development methods, we
can still contrast their study finding with ours to characterize
some of the dimensions of Leadership that increase individual
Personal Strength, perform drum beating, and shelter others. Sev-
eral of the roles are directly related to boosting Personal Strength:
Mentor, Champion, and Promoter may all be seen as roles that give
team members confidence in the process, and confidence to reach
out and attempt to engage others when they believe they have a
Perspective Mismatch. The role of the Coordinator concurs with the
role we see in Leadership to shelter teams from interference yet keep
the team sufficiently connected to the organizational Eco-system
such that they are not closed or Cut-off from Communications. In
Organizing Self-Organizing Teams, both the Translator and the Pro-
moter could also be seen as creating a rhythm, and being the “drum
beater” both within the team and to the outside organization.

During our study, several subjects related to us stories of the
damage teams suffered from the lack of a Terminator. These stories
of project failures or dysfunctional teams were directly related to
leaders who either let their teams become Exposed or deliberately
Cut-off the team from the organizational Eco-system. In one case, the
eventual removal of an ineffective leader resulted in an immediate
improvement in team performance.

4.3. Mental model convergence, knowledge communities,
knowledge creation, and reconciling perspectives

What we are referring to as a Perspective is comparable to
what much of the psychology literature refers to as a mental
model (Johnson-Laird, 1983). Shared mental models are “knowl-
edge structures held by members of a team that enable them to form

accurate explanations and expectations for the task, and in turn,
to coordinate their actions and adapt their behavior to demands of
[their unique domain]” (Cannon-Bowers et al., 1993). Furthermore,
Firore and Salas (2001) assert that “Members of effective teams

ems a

p
a
k
C
t
i
p
g
c

w
g
m
o
a
o
w
i
a
i
g

t
d
t
i
d
i
w
u
c
o
o
r
G
l
m
e

o
p
C
o
c
t
t
a
c
a
t

a
a
l
a
T
s
k
a
k

i
P
i
v
p

S. Adolph et al. / The Journal of Syst

ossessed a shared set of knowledge that facilitates their inter-
ctions. In particular highly effective teams must hold compatible
nowledge structures about a variety of facets of team tasks”.
ronin and Weingart (2007) describe mismatches between men-
al models as “. . .representational gaps, inconsistencies between
ndividual’s definition of the team’s problem, limit both of these
rocesses making it more difficult for team members to inte-
rate one another’s information and increasing the likelihood of
onflict”

The Converging stage of Reconciling Perspectives concurs with
hat Sara McComb (2007) describes as “mental model conver-

ence,” where team members’ mental models evolve into a shared
ental model through their interactions and observations of each

ther. Convergence of mental models explains how individu-
ls socialize themselves into teams and, during our study, we
bserved situations that suggested this process was occurring
ithin teams. A significant difference in Reconciling Perspectives

s that the process extends beyond the immediate team,
nd much of our interview data described interactions that
ndividuals had with other individuals from other functional
roups.

Levesque et al.’s study (2001) challenges the prediction that
eam members’ mental models converge over time. Their study
iscovered a decline in shared mental models over time which
hey related to a decrease in interaction. Lévesque suggested that
ncreasing specialization among team members contributed to this
ecline. Their finding supports the phenomena we observed dur-

ng the Bunkering stage. Most software teams consist of people
ith a variety of skills and domain knowledge and, once they
nderstand their sprint tasks, they often see no value in staying
onnected to other team members because there is little else that
ther team members can do to help them. In many situations,
nce a Consensual Perspective had been reached, team members
educed their interactions with others to work undisturbed at
etting the Job Done. Levesque’s findings suggest Bunkering may

ead to cognitive divergence or Perspective Mismatch between team
embers. With long cycle time methods, this divergence can widen

nough to risk Surprise during Accepting.
Boland and Tenkasi (1995) characterized knowledge-intensive

rganizations as composed of knowledge communities that each
ossess highly specialized technologies and knowledge domains.
ommunication within a community that strengthens and devel-
ps localized knowledge is a “perspective making” process, while
ommunication that improves a community’s ability to take
he knowledge of other communities into account is “perspec-
ive taking”. If we characterize software developers, analysts,
nd project managers as belonging to different knowledge
ommunities, then much of the data we collected on their inter-
ctions is supported by Boland’s and Tenkasi’s term “perspective
aking”.

Perspective making and perspective taking are knowledge cre-
tion processes, and knowledge-based firms realize competitive
dvantage by leveraging their individuals’ ability to share and uti-
ize their distinct knowledge. Reconciling Perspectives then becomes

 knowledge creation process where individuals are Perspective
aking during the Negotiating Consensus stage. The negotiating
trategy of Scouting clearly extends an organization’s body of
nowledge. The negotiating strategies of Translating and Broadening
lso create organizational knowledge by making knowledge that is
nown in one community accessible and useful to another.

A differentiating characteristic of Reconciling Perspectives
s that the process only starts if individuals recognize a

erspective Mismatch and are willing to do something about
t. Organizational and personal barriers that prevent indi-
iduals from Reaching Out impede this knowledge creation
rocess.
nd Software 85 (2012) 1269– 1286 1283

4.4. Organizations as biological systems, contingency theory and
reconciling perspectives

Morgan’s Images of Organization (2006) presents a survey of
models or metaphors for characterizing organizations, one of which
is Ludwig von Bertalanffy’s (1950) work comparing organizations
to biological systems. As biological systems, organizations are
modeled as a collection of interrelated sub-systems with wholes
contained within wholes. Individuals are systems living in the con-
text of a group living in the context of a department or larger
division. These systems are open to their environment, an “envi-
ronment defined by organizations direct interactions with customers,
competitors, suppliers, labor unions, government agencies, as well as
the larger contextual or general environment” (Morgan, 2006, p. 38).
For the organization to survive, it must achieve an appropriate rela-
tionship with its surrounding environment. von Bertalanffy’s work
was developed by others into what is collectively known as Con-
tingency Theory (Burns and Stalker, 1961; Lawrence and Lorsch,
1967; Woodward, 1958); one of the main themes is that there is no
one best way of organizing and different approaches to manage-
ment may be necessary to perform different tasks within the same
organization.

This biological view of the organization is in stark contrast to
the Taylorist (Taylor, 1911) scientific management philosophy that
characterizes the organization as a machine bureaucracy. Burns
and Stalker’s (1961) studies of a variety of industries established
the distinction between the Taylorist “mechanistic” approach and
more contingent “organic” approaches to organizing. Organizations
operating in relatively stable environments that are routine and
well understood benefit from being organized in a more mechanis-
tic hierarchical way. Innovative organizations, operating in more
uncertain and turbulent environments, require a more organic
approach that adapts to the environment. Lawrence and Lorsch
(1967) further refine contingency theory by suggesting that styles
of organization may have to vary between organizational sub-units
because of the detailed characteristics of their sub-environment.

If we assume that software development occurs in uncertain
and turbulent environments, organizations creating software must
be organized more organically, likely with a fair degree of differ-
entiation between the organization’s internal sub-units, and these
sub-units must interact and develop appropriate relationships with
each other. We clearly observed this distinction between organi-
zational sub-units during our study. Reconciling Perspectives is one
part of the interaction between organizational sub-units, whether
those sub-units are individuals, groups, or organizational divisions,
because Reconciling Perspectives requires those sub-units to main-
tain an appropriate openness and connection to their environment.
The system must manage its relationship to the environment to
obtain and reflect on feedback, to reach out, and to negotiate. This is
in contrast to closed or so-called “mechanistic systems” where the
sub-systems are cut-off from the environment and communication
occurs in a strict “chain of command” like style. From their study,
Lawrence and Lorsch (1967) declared that an appropriate mode of
organization for innovative organizations was the use of “multi-
disciplinary project teams and the appointment of personnel skilled in
the art of coordination and conflict resolution” (Lawrence and Lorsch,
1967)

4.5. Agile methods and reconciling perspectives

Reconciling Perspectives is a lens through which we can interpret
the Agile Manifesto (AgileAlliance, 2001a) and Agile Princi-

ples (AgileAlliance, 2001b). It is straightforward to connect the
Converging stage to manifesto articles of “Individuals and interac-
tions over processes and tools”, “Customer collaboration over contract
negotiations” and “Responding to change over following a plan” In

1 ems a

R
t
a
t
n
w
t
m

b
n
d
B
v
w
t
c
o
i
c
o

c
e
w
f
s
t
f
t
t
t

(
t
s
s
t
n
a
e
d
f
i
c
c
f
u
2
a
s
t

p
p
d
t
b
t
o
o
i
O

p
i

284 S. Adolph et al. / The Journal of Syst

econciling Perspectives, individuals interact to reach out and nego-
iate a Consensual Perspective. Customers are one type of Acquirers
nd, if we do not collaborate with our customers and use a contract
o Cut-Off ourselves from the customers, there is minimal opportu-
ity for early detection of Perspective Mismatches. The same is true
ith strictly following a plan that can again cut the team off from

he organizational Eco-system. Converging a Perspective Mismatch
eans responding to change.
Connecting the Validating stage to the Agile Manifesto slightly

lurs the interpretation because while it is straightforward to con-
ect the Manifesto article “Working software over comprehensive
ocumentation” to Accepting it is not straightforward to connect
unkering to the Manifesto. Reconciling Perspectives suggests indi-
iduals and teams need quiet focused time to Get the Job Done
hich contrasts with the emphasis the Manifesto places on interac-

ion and collaboration. The need for open communications is quite
lear in our data because the root cause for many project challenges
bserved during this study was insufficient communication, both
n volume and in diversity. However, many individuals were also
hallenged by too much communication and were unable to focus
n Getting the Job Done. Too much of a good thing can be a problem.

The need for focused time is perhaps captured in the Agile Prin-
iple “Build projects around motivated individuals. Give them the
nvironment and support they need and trust them to get the job done”
hich could be interpreted as trust the team and give them the

ocused time they need to Get the Job Done. Agile software methods
uch as Scrum are more explicit capturing the need for “focus” in
he five Scrum values. Moreover, the intention behind the interval
rom the time a Sprint is planned until the Sprint Demo is that the
eam has the opportunity to work without interruption and change
o their Sprint Backlog; the Scrum Master is tasked with protecting
he team from outside interference.

All teams participating in this study claimed to be using Scrum
Schwaber and Beedle, 2002), which is a method for organizing
eams to deliver a product or service. Scrum’s prescribed meetings,
print planning, daily stand-ups, sprint review, and sprint retro-
pective are all opportunities for those participating in a project
o check-in and, if necessary, start Reaching Out. The sprint plan-
ing meeting is an opportunity to detect a Perspective Mismatch
nd Negotiate Consensus as the Scrum Product Owner (Acquirer)
xplains backlog items to the delivery team (Supplier). Once the
elivery team commits to the sprint, then the delivery team
ocuses on Getting the Job Done, without being Exposed to interfer-
ng change (Bunkering). Team members are encouraged to regularly
heck-in with the team to prevent the Bunkering stage from dis-
onnecting them from others (Cut-Off). When the Work Products
or a story (Job) are complete, they are presented to the Prod-
ct Owner for acceptance (Accepting). Scrum’s short cycle time of
–4 weeks mitigates Surprise during Validating. The Scrum Master is

 trained facilitator who owns the process, drum beating, and per-
onal strength boosting and, along with the Product Owner, Shelters
he team from outside interference.

During this study we heard many stories of failed Scrum
rojects, and we can use Reconciling Perspectives to explain these
rojects. The common thread was teams that cut themselves off and
id not did not detect the Perspective Mismatches, or did not start
he Reaching Out process. They went “through the Scrum motions”
ut did not follow the intent of Scrum. A condition cited for an effec-
ive Scrum team is a “strong” and available Product Owner, and our
bservations support this condition. We observed situations where
ther strong team members mitigated this situation by stepping
nto the vacuum created by an unavailable or disengaged Product

wner.

Ineffective Scrum Masters limited the effectiveness of the Scrum
rocess by not taking ownership of the process, and by their inabil-

ty to facilitate the process. Some merely “chaired” meetings and
nd Software 85 (2012) 1269– 1286

could not boost personal strength, drum beat, or shelter the team.
In many situations, some Scrum Masters simply either let the team
become exposed, or completely locked it down, cutting it off from
the rest of the organization. While many of these Scrum Masters
had Scrum Master training, the training often lacked emphasis on
facilitation skills.

Another common failure was long cycle time. While most teams
claimed to develop using short sprints, there were many stories
and examples of sprint commitments not being reached, and work
that was not completed simply being rolled over into the next
sprint. In other situations, the Work Products demonstrated during
the sprint review were incomplete; therefore, they gave a mis-
leading impression to the product owner. The true states of the
Work Products were not revealed until much later, usually at a sig-
nificant product release milestone. The result was everyone acting
as if they were operating on short cycle times and assuming the
benefits of a short cycle time while, in fact, they had very long cycle
times.

4.6. Enhancing software team performance

One subject succinctly summed up the source for many of the
difficulties experienced in software projects:

“But there just weren’t enough conversations taking place” Site
2, Subject 3

Simply getting people to talk to one another should benefit
software team performance. Shared mental model theory predicts
higher team performance when the members can have their men-
tal models converge; people’s models converge when they observe
and engage with each other. This suggests that enhancing the
ability of those engaged in software development to reach out
(Reaching Out) and negotiate (Negotiating Consensus) when they
encounter impediments will enhance software team performance.
Lawrence and Lorsch (1967) offer a solution in their recommenda-
tion for multi-disciplinary teams and for the use of personnel skilled
in the art of coordination and conflict resolution. Scrum, and specif-
ically Scrum’s Scrum Master role, may be seen as a manifestation
of this recommendation. However, the role of a facilitator is not
a role that anyone can assume without appropriate training, and
ineffective Scrum Masters were a frequently cited as contributors
to software team failure.

While individual traits such as extroversion and introversion
will pre-dispose individual behavior, there is precedence from the
aviation industry suggesting that training people how to reach out
and negotiate can improve team performance. Cockpit Resource
Management (or Crew Resource Management) (Wiener et al., 1995)
is training that is given to all airline transport pilots, teaching those
who have been trained as individuals how to work as a team. The
program was instituted after investigating accidents blamed on
“pilot error” in an effort to discover what was missing from pilot
training. What was discovered was not a deficiency in so-called
“stick and rudder skills” but an inability of the flight crew to func-
tion as a team.

The effectiveness of team training has lead to other professions
where individuals must operate in teams, such as medicine to adopt
Crew Resource Management like training. This study demonstrates
a strong need for managed communications and yet our profession
provides little in the way of the necessary training. For example, the
Certified Scrum Master (CSM) learning objectives (ScrumAlliance,
2011) state individuals learn the responsibilities Scrum Master role

including:

• serves the product owner and team,
• removes the impediments,

ems a

•
•

a
p
b
d
m

1

2

5

o
r
v

•

•

•

•

a
i
a
p
b
a
a
a
d

c

(

(

(

S. Adolph et al. / The Journal of Syst

coaches the Product Owner and team, and
protects the team.

While these are necessary learning objectives for individuals
nd teams using Scrum and especially for those individuals step-
ing into the role of the Scrum Master, they are not sufficient
ecause there is little opportunity within the CSM to teach or
evelop the necessary skills. From this, we can make two recom-
endations for improving software team performance:

) Team training should become part of the regular engineering
and software professional education, and

) For organizations practicing Scrum, greater attention should be
paid to the selection of the Scrum Masters, either
a. select individuals for the role with demonstrated leadership

and facilitation skills,
b. provide facilitation training to stronger team members who

have the respect of their peers,
c. hire or contract individuals skilled in facilitation to serve as

professional Scrum masters.

. Summary

Our study explains how people manage the process of devel-
ping software using the process of Reconciling Perspectives to
emove impediments created by Perspective Mismatches that pre-
ent Getting the Job Done. The process breaks down when:

Individuals and teams go dark (McCarthy and Gilbert, 1995)
and the process simply does not start because the number of
Communications is so low or intermittent that individuals are
unable to reflect on the Feedback they are hearing in the commu-
nications and do not realize that there is a Perspective Mismatch.
Individuals lack the Personal Strength to reach out; they are aware
that something doesn’t sound right, but choose not to engage
others in an attempt to negotiate a Consensual Perspective.
Others do not agree when those detecting the
Perspective Mismatch reach out to them.
Negotiations bog down and do not reach a Consensual Perspective.

The theory of Reconciling Perspectives holds few surprises for
ny reader of popular organizational theorists. Grounded theory
s not about creating surprising new substantive theories; it is
bout understanding what is happening to those experiencing a
henomenon from their point of view. What did take us a little
y surprise is how most study participants framed as negotiations
ll conversations associated with scheduling, requirements man-
gement, and design. This suggests that negotiation is viewed as

 dominant activity by those engaged in the process of software
evelopment.

From our observations during this study, we can draw several
onclusions and make the following recommendations:

1) A necessary condition for the success of a software project
is that there is at least one individual who is sufficiently
engaged that they can detect Perspective Mismatches, and
who has the personal strength to reach out and initiate the
Reconciling Perspectives process.

2) The health of a software project, and its probability of success,
can be measured by the number of conversations where people

are Reaching Out and Negotiating Consensus.

3) Team training and development of principled negotiation skills
for software developers has good potential for improving team
performance.
nd Software 85 (2012) 1269– 1286 1285

This study adds weight to the argument that qualitative research
methods are effective for creating software engineering knowledge.
We demonstrated the utility of grounded theory as a software engi-
neering research method, enabling us to see what is important to
those whose lives we are trying to improve.

Acknowledgements

The authors wish to express their thanks to the AgileAlliance, the
Scrum Alliance, and the Eclipse Foundation for their support of this
research. Our further thanks go to our reviewers, and especially the
anonymous reviewer who introduced us to Boland’s and Tenkasi’s
paper.

References

Adolph, S., Hall, W., Kruchten, P., 2011. Using grounded theory to study the experi-
ence of software development. Empirical Software Engineering, 1–27.

Adolph, S., Kruchten, P., 2011. Reconciling perspectives: how people manage the pro-
cess of software development. Paper presented at the AGILE Conference (AGILE),
August 7–13, 2011.

AgileAlliance, 2001a. Manifesto for Agile Software Development, Retrieved from
http://www.agilemanifesto.org/.

AgileAlliance, 2001b. Principles of Agile Software Development.
Bartels, A., Holmes, B.J., Lo, H., 2006. US Slowdown in 2007 will Dampen

the $1.6 Trillion Global IT Market. Forrester Research, Retrieved from
http://www.forrester.com/Research/Document/Excerpt/0,7211,40451,00.html.

Becker, P.H., 1993. Common pitfalls in published grounded theory research. Quali-
tative Health Research 3 (2), 254–260.

Boehm, B.W., 1984. Software engineering economics. IEEE Transaction on Software
Engineering 10 (1).

Boehm, B.W., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.W., 1995.
Cost models for future software life cycle processes: COCOMO 2.0. Annals of
Software Engineering 1 (1).

Boland Jr., R.J., Tenkasi, R.V., 1995. Perspective making and perspective taking in
communities of knowing. Organization Science 6 (4), 350–372.

Burns, T., Stalker, G.M., 1961. The Management of Innovation. Tavistok, London.
Cannon-Bowers, J.A., Salas, E., Converse, S., 1993. Shared mental models in expert

team decision making. In: Castellan, J. (Ed.), Current Issues in Individual and
Group Decision Making. Lawrence Erlbaum Associates, New Jersey.

Chong, J., 2005. Social behaviors on XP and non-XP teams: a comparative study.
Paper presented at the Proceedings of Agile Conference, July 24–29, 2005.

Cockburn, A., 2002. Agile software development joins the would-be crowd. Cutter
IT Journal 15 (1).

Cockburn, A., 2003. People and Methodologies in Software Development. University
of Oslo, Oslo.

Cockburn, A., Highsmith, J., 2001. Agile software development, the people factor.
Computer 34 (11), 131–133.

Cronin, M., Weingart, L., 2007. Representational gaps, information processing, and
conflict in functionally diverse teams. Academy of Management Review 32 (3).

Curtis, W., Krasner, H., Shen, V., Iscoe, N., 1987. On building software process models
under the lamppost. Paper presented at the Proceedings of the 9th International
Conference on Software Engineering.

Diaz, M., Sligo, J., 1997. How software process improvement helped Motorola. IEEE
Software 14 (5), 75–81.

Dittrich, Y., John, M., Singer, J., Tessem, B., 2007. For the special issue on qualitative
software engineering research. Information and Software Technology 49 (6),
531–539.

Dyba, T., Moe, N.B., Arisholm, E., 2005. Measuring software methodology usage:
challenges of conceptualization and operationalization. Empirical Software
Engineering. 2005 International Symposium on, 17–18 November, 11pp.,
doi:10.1109/ISESE.2005.1541852.

Emerson, R., Fretz, R., Shaw, L., 1995. Writing Ethnographic Fieldnotes. University of
Chicago Press, Chicago.

Firore, S., Salas, E., Cannon-Bowers, J.A., 2001. Group dynamics and shared men-
tal model development. In: London, M. (Ed.), How People Evaluate Others in
Organizations. Lawrence Erlbaum, New Jersey.

Fitzgerald, B., 1998. An empirical investigation into the adoption of systems devel-
opment methodologies. Information & Management 34 (6), 317–328.

Glaser, B., Holton, J., 2004. Remodeling grounded theory. Forum Qualitative Sozial-
forschung/Forum: Qualitative Social Research in Nursing & Health 5 (2),
Retrieved from http://www.qualitative-research.net/fqstexte/2-04/2-04glaser-
e.htm.

Glaser, B.G., 1978. Theoretical Sensitivity. Sociology Press, Mill Valley, CA.
Glaser, B.G., 1992. Basics of Grounded Theory Analysis. Sociology Press, Mill Valley,
CA.
Glaser, B.G., 1998. Doing Grounded Theory: Issues and Discussions. Sociology Press,

Mill Valley, CA.
Glaser, B.G., Strauss, A., 1967. The Discovery of Grounded Theory: Strategies for

Qualitative Research. Aldine, Chicago, IL.

http://www.agilemanifesto.org/
http://www.forrester.com/Research/Document/Excerpt/0,7211,40451,00.html
http://dx.doi.org/10.1109/ISESE.2005.1541852
http://www.qualitative-research.net/fqstexte/2-04/2-04glaser-e.htm

1 ems a

G

H

H

H

J

J

L

L

L
L

M
M

M
D

M

M

M

R

286 S. Adolph et al. / The Journal of Syst

lass, R.L., Vessey, I., Ramesh, V., 2002. Research in software engineering: an
analysis of the literature. Information and Software Technology 44 (8), 491–
506.

arter, D.E., Krishnan, M.S., Slaughter, S.A., 2000. Effects of process maturity on
quality, cycle time, and effort in software product development. Management
Science 46 (4), 451–466.

oda, R., Noble, J., Marshall, S., 2010. Organizing self-organizing teams. Paper pre-
sented at the Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering – vol. 1.

sieh, Y., Kruchten, P., MacGregor, E., 2006. Matching expectations—when culture
wreaks havoc with global software development. Paper presented at the Work
Beyond Boundaries: An International Conference on Tele-mediated Employ-
ment and its Implications for Urban Communities, Emergence, Vancouver,
Canada, June 15–17, 2006.

ohnson-Laird, P.N., 1983. Mental Models: Towards a Cognitive Science of Language,
Inference, and Consciousness. Cambridge University Press, Cambridge.

ones, C., 2000. Software Assessments, Benchmarks, and Best Practices. Addison-
Wesley, Boston.

awrence, P., Lorsch, J.W., 1967. Organization and Environment: Managing Differ-
entiation and Integration. Harvard University, Boston.

evesque, L.L., Wilson, J.M., Wholey, D.R., 2001. Cognitive divergence and shared
mental models in software development project teams. Journal of Organiza-
tional Behavior 22 (2), 135–144.

incoln, Y.S., Guba, E.G., 1985. Naturalistic Inquiry. Sage, Newbury Park.
ister, T., DeMarco, T., 1987. Peopleware: Productive Projects and Teams. Dorset

House, New York.
arshall, M., 1996. Sampling for qualitative research. Family Practice 13 (6).
cCallin, A.M., 2003. Designing a grounded theory study: some practicalities. Nurs-

ing in Critical Care 8 (5), 203–208.
cCarthy, J., Gilbert, D., 1995. Dynamics of Software Development. Microsoft Press.
McComb, S., 2007. Mental model convergence: the shift from being an indi-

vidual to being a team member. Multi-Level Issues in Organizations and
Time 6.

oe, N.B., Dingsoyr, T., Dyba, T., 2008. Understanding self-organizing teams in agile
software development. Paper presented at the 19th Australian Conference on
Software Engineering, ASWEC, March 26–28, 2008.

organ, G., 2006. Images of Organization. Updated Edition. Sage Publications, Thou-

sand Oaks, CA.

ulhall, A., 2003. In the field: notes on observation in qualitative research. Journal
of Advanced Nursing 41 (3), 306–313.

ittel, H., Webber, M., 1973. Dilemmas in a general theory of planning. Policy Science
4, 155–169.
nd Software 85 (2012) 1269– 1286

Robinson, H., Sharp, H., 2005. Organisational culture and XP: three case studies.
Paper presented at the Proceedings of Agile Conference, July 24–29, 2005.

Sawyer, S., Guinan, P.J., 1998. Software development: processes and performance.
IBM Systems Journal 37 (4), 552–569.

Schreiber, R.S., Stern, P.N., 2001. Using Grounded Theory in Nursing. Springer Pub-
lishing Company, New York.

Schwaber, K., Beedle, M., 2002. Agile Software Development with Scrum. Prentice
Hall, Upper Saddle River, NJ.

ScrumAlliance, 2011. Certified ScrumMaster (CSM) Content Outline and Learn-
ing Objectives, Retrieved from http://www.scrumalliance.org/system/resource
files/0000/3640/CSM Content Outline and Learning Objectives Dec2011.pdf.

Shaw, M., 2003. Writing good software engineering research papers: minitutorial.
IEEE Transactions on Software Engineering.

Sjoeberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg,
N.K., et al., 2005. A survey of controlled experiments in software engineering.
IEEE Transactions on Software Engineering 31 (9), 733–753.

Strauss, A., 1987. Qualitative Analysis for Social Scientists. Cambridge University
Press, Cambridge.

Taylor, F.W., 1911. Principles of Scientific Management. Harper & Row, New York.
von Bertalanffy, L., 1950. The theory of open systems in physics and biology. Science

111.
Whitworth, E., Biddle, R., 2007. The social nature of Agile teams. Paper presented at

the AGILE 2007.
Wiener, E.L., Kanki, B.G., Helmreich, R.L. (Eds.), 1995. Cockpit Resource Management.

Academic Press, San Diego.
Woodward, J., 1958. Management and Technology. Her Majesty’s Stationary Office,

London.
Zannier, C., Melnik, G., Maurer, F., 2006. On the success of empirical studies in

the international conference on software engineering. Paper presented at the
Proceeding of the 28th International Conference on Software Engineering.

Steve Adolph is a PhD candidate in Electrical and Computer Engineering at the Uni-
versity of British Columbia and an agile coach with Rally Software. His research
interests include software process engineering, requirements management, and
software architecture.

Philippe Kruchten is a professor of software engineering at the University of British

Columbia, and NSERC Chair in Design Engineering. He led the development of the
Rational Unified Process.

Wendy Hall is a nursing professor in the School of Nursing at the University of
British Columbia. Her research interests include research methods and parent child
development.

http://www.scrumalliance.org/system/resource_files/0000/3640/CSM_Content_Outline_and_Learning_Objectives_Dec2011.pdf
http://www.scrumalliance.org/system/resource_files/0000/3640/CSM_Content_Outline_and_Learning_Objectives_Dec2011.pdf

	Reconciling perspectives: A grounded theory of how people manage the process of software development
	1 Introduction
	2 Our study
	2.1 Motivation
	2.2 Grounded theory
	2.3 Grounded theory and literature reviews
	2.4 Research question
	2.5 Data collection and analysis
	2.5.1 Research sites
	2.5.2 Interviews
	2.5.3 Participant observation
	2.5.4 Document analysis
	2.5.5 Sampling
	2.5.6 Analysis
	2.5.7 Validity

	3 Results
	3.1 The software development context
	3.2 Getting the job done
	3.3 Perspectives mismatches
	3.4 Converging
	3.5 Reaching out
	3.6 Negotiating consensus
	3.7 Validating
	3.8 Bunkering
	3.9 Accepting

	4 Discussion
	4.1 Anticipation-eXecution—Expectation model
	4.2 Organizing self-organizing teams
	4.3 Mental model convergence, knowledge communities, knowledge creation, and reconciling perspectives
	4.4 Organizations as biological systems, contingency theory and reconciling perspectives
	4.5 Agile methods and reconciling perspectives
	4.6 Enhancing software team performance

	5 Summary
	Acknowledgements
	References

